Archives par étiquette : wiring

image_pdfimage_print

Electronic Wiring – Scalar M – XL

Electronic Wiring on Ramps 1.4 board

5V or12V probe? Careful choose your schematic

  • 12V probe has 1 Dupont 2 pins connector and 1 red wire left over
    • Red wire left over: +12V
    • Black wire: 0V- Ground
    • Red wire in connector: Signal.

 

 

 

 

Here is the wiring diagram to use


  • 5V probe has only 1 Dupont connector with 3 pins.
    • Brown wire (+5V)
    • Blue wire (0V – GND)
    • Black wire (Signal)

 

  • 5V probe can be provided with and extender with different colors
    • Red wire (+5V)
    • Black wire (0V – GND)
    • White wire (Signal)

The wiring on the electronic board is similar to the previous version of this probe.

  • The Red wire corresponds to the Brown wire
  • The Black wire corresponds to the Blue Wire
  • The White wire corresponds to the Black wire

Here is the wiring diagram to use


 

 

Schematic for 12V proximity sensor

Electronic wiring on Ramps 1.4

On this 2nd schematic, ou will find a schematic closer to what is provided within the kit. With the induction probe, the hot end fan ad the auxiliary blower fan.

On the induction probe, it is provided with 3 wires. 2 (red and black) are connected to a Dupont 2 pin connector, and 1 (red) left alone with a node here, is the power supply of the probe.

Schematic for 5V proximity sensor

Brachement électronique de la carte Ramps 1.4 avec sonde à inductance 5V

This schematic corresponds to the kits provided after 17th October 2016.

This kit is provided with a 5V proximity sensors. The blue wire is the ground wire. The black wire is the signal wire and the brown wire is the +5V powe wire.

If your probe is not provided with a 3pin black connector, please look at the other schematics.

A Y shape wire extender is also provided. It’s directly connected to the 12V power output of the Ramps board and will help you to connect the hot end fan power supply to the +12V. It will also be used to connect the 80mm 12V fan dedicated to cool down your electronics.

 

You should be able to recognize the other components now. The wire’s color on the stepper motors are only for information, the one provided might have a completely different set of colors. The one on the power terminals are real colors with the red wire corresponding to +12V and the black wire to the ground wire (0V)

 


Ramps 1.4 Schematic

Ramps 1.4 Schematic

For information purpose here is the official schematic of the Ramps 1.4 board. It is the same you will find on the official reprap wiki .

This schematic give you more data on all the pin out and also on the optional headers.

 

 

A word about the Big green power terminal

Ramps 1.4 power terminalsYou need to understand that the Green power connector on the left of the schematic picture is a Plug connector,

Meaning that the big part with the terminals can be removed from it’s base.

The picture here shows the 2 different parts:

  • On the left the terminal part that can be removed/unplugged
  • On the middle the fixed part, soldered on the ramps board
  • On the right side, the 2 parts attached together.

 


 

As visual support here is a picture of the electronic board free from any cables.

If you want compare directly with the previous schematic, you will need to make a 180° rotation as the power terminals are on the right on this picture and on the left on the previous schematic

 

 


For the standalone end stop holder (you might not have it, it has been replaced by the one below.)

Let’s start with the cables located on the Y axis, under the heat bed.

Also take 2 « long » U shaped clips and 1 cable tie.

 

For Integrated end stop, it’s very easy, the picture shows you how the wires are placed.

 

 

 

 

 


Pass all the wire inside the chassis.

You should have 2 wires of the end stop and 4 for the stepper motor.

Bring them all together and secure them inside the aluminum profile slot located just behind the stepper motor support

 


View from inside of the machine, the wires can easily fit inside the aluminum profile slot .

With 2 long plastic clips, secure the wires. Using short clips is not advised because they will raise the chassis of a few millimeters on this side only breaking the overall equilibrium. Use the « long » clips to keep the main part of the clip oriented toward the top of the machine.

 


(Scalar XL) In the corner of the chassis is located the SSR static relay. Attach the wires with a cable tie with the wires from the heat bed.

This will secure the wires on the same location.

 

 

 


 

(Scalar XL) Tighten the cable tie.

 

 

 

 

 


Take the end stop connector.

 

 

 

 


At any steps, feel free to go back to the official schematic if you have any doubt about the picture or if it’s not clear.

Place the Y axis end stop connector on it’s place, please read the following to the end before doing anything .

On the picture, the whole set of pins located on the lower left side is dedicated to end stops.

There are 3 rows pins from top to bottom.

The first row is linked to the +5V power (provided from the arduino itself).

The second row is linked to the Ground (+0V)

The last row is linked directly to the arduino.

Attention: Never connect the top row with the middle row because you will short circuit the +5V generated by the arduino when the end stop will close causing. If for some reason you happen to do this you will cause some irreversible damages to the arduino power supply and the electronics might not work anymore afterward.

Important: All the end stop MUST be connected on the bottom and middle row.

To complete the explanation, you can connect up to 6 end stop on a 3d printer. for each axis you can have 2 end stops, one for MIN and the other one for MAX position.

The firmware allows to use only MIN end stops and will handle by software the one for MAX position.

So you can reduce the amount of end stops to 3 end stops.

Each columns dedicated to 1 specific end stop.

Each axis is grouped by 2 columns side by side.

Starting from the right of the picture you will get the following :

  1. X MIN
  2. X MAX
  3. Y MIN
  4. Y MAX
  5. Z MIN
  6. Z MAX

You will connect the Y axis MIN end stop at the bottom of the 3rd column from the right..


Now let’s connect the heat bed thermistor connector located under the heat bed.

Locate it’s connector, you will now connect it to the electronic board.

 

 

 


The thermistor dedicated input pins are located just above the one dedicated for end stops.

You will find 6 pins on the same row, with T0, T1, T2 marking just below.

  1. T0 is for the hot end thermistor.
  2. T1 is for the heat bed thermistor
  3. T2 is an optional thermistor for a possible 2nd hot end.

So, connect the heat bed thermistor on the 3rd and 4th pin from the right, which should correspond to T1


Now take the Y axis stepper motor connector .

 

 

 

 

 

 

 


The dedicated pins for stepper motors are located below each stepper motor drivers, the small components with the heat sink.

You will find the markings indicating what stepper motor the driver is dedicated to.

On the top row, you have 3 motor drivers side by side. From right to left you have the dedicated axis:

  1. Axe X (marked X)
  2. Axe Y (marked Y)
  3. Axe Z (marked Z)

On the 2nd row you have here on the picture only 1 stepper driver and a free space for a 5th stepper driver.

Those are dedicated to Extruders, the part of the printer that pushes the plastic to the hot end.

From right to left:

  1. Extrudeur 0 (marked E0)
  2. Extrudeur 1 (marked E1)

Now connect the Y axis motor cable on the middle connector of the first row.

Very important: The stepper drivers don’t support to be powered on without any motor attached to them. doing this will definitely damage the component.

Please make sure to have at least 1 stepper motor connected to each stepper drivers mounted on the electronic board!

If you are using only 4 axis (X, Y , Z, and E0) and you happen to have 5 stepper drivers, mount only 4 of them and keep the 5th one in it’s packaging. It can be of some use as spare part if one of the drivers is failing or damaged.


Now let’s look at X axis stepper motor connector

 

 

 

 


This one is to be connected on the right of the Y Axis motor on the first row.

 

 

 

 


Now take the X axis end stop

 

 

 

 

 


It has to be connected at the bottom of the first Column starting from the right of the end stop dedicated header pins.

 

 

 


Still on the same machine’s side, you should have the Z axis motor connector left.

 

 

 

 

 


The Z axis has 2 dedicated pin header’s rows located under the dedicated Z axis stepper motor driver.

You may want to know that 1 single stepper driver can drive 2 stepper motor at once.

Connect this motor on one of the 2 rows.

 


(Scalar XL) Still on the same side of the machine, you can connect the static relay to the electronic board.

Start by taking a black cable provided with the static relay.

 

 

 


(Scalar XL) Screw it on the terminal connector with the «  » marking and the number « 4« 

(Scalar M) You won’t have any static relay on Scalar M, so take the 2 power wires coming from the heat bed.

 

 

 


(Scalar XL) The other side of the cable is to be connected on the set of power terminals (here blue) with « D8 » marking.

Each terminal connector of this column is identified by a small marking « + » that identifies the +12V output.

As the wire you have was connected on the « – » of the static relay, locate the terminal connector with « D8 » marking and connect the wire on the connector below the « + » marking. It should be the 2nd connector starting from the top.

(Scalar M) Take any one the 2 silicon heater power wire and plug it to the same terminal (the silicone heater has no polarity, so there is no ‘+’ and no « -« )

 


On the static relay side, connect now the 2nd wire (it should be red).

 

 

 


Screw it on the last remaining terminal with the « + » marking and identified by the number « 3« .

 

 

 

 


(Scalar XL) Connect the other side of the wire on the power terminal blocks, on the very first connector starting from the top, just above the previous wire you connected.

(Scalar M) take the left over heat bed power wire and plug it at in this same terminal.

 


Scalar XL:

On the XL heat bed, as it’s 220V the heat bed is provided with a Ground wire. It’s the one with Yellow and green color.

 

The purpose of this wire is to link the metallic chassis of your printer to the ground.

Indeed, if the 220V power wire gets broken for any reason and touches the chassis, your electric panel should crack up.

In order to have a proper connection, you need to connect it to any M6 screw on your chassis.

Here is an example on where you can place it! We choose a Metalic Square as it seems they provide the best location for this purpose.

 

 

 

 

 

 

 


The picture here is giving you some more information with a set of stickers on the wires. It should help you to figure out better where each wire is located

 

 

 

 

 

 


(Scalar XL) Start by separate the wires coming from the static relay and the other remaining ones..

 

 

 

 


Place the wires on the slot of the vertical aluminum profile.

You can use 2 « long » clips to help you maintain the wires inside the slots as shown on the picture.

 

 


Also add the wires coming from Y axis motor as well as it’s end stop inside the same slot on top of the wires attached to the static relay.

You might have to remove and replace the clips previously attached on the aluminum profile.

 


Now you can also insert the Z axis motor wire and help you with the already in place clips.

 

 

 


You should have 2 set of wires left coming from the X axis.

Keep in mind that those wires will have to follow the up down movement of the X axis.

 

 

 


Take them in your hand.

 

 

 

 

 

 


Take the 2 sets of wires, 1 with 4 wires and the other one with 2 wires. As they will move at the same time, it’s interesting to keep them together and check that there are enough length for them to go up and down the Z axis.

 

 

 


The best is to have the X axis carriage at the lowest or highest position possible so that you can quickly estimate the amount of wire length needed.

Here our carriage is located at the bottom and we roughly evaluate the length of wire we need for it to move up. mark or keep this length (here with our hand on top)

 

 


You can secure them by inserting them inside the vertical profile slot by letting them exit either toward the top or the opposite.

Secure them with a clips at the level marked by your hand earlier corresponding to the length needed to move all along the Z axis.

 

 


You can secure the wires with cable ties.

 

 

 

 

 


Now continue on with the set of wires coming from the hot end.

Place them on the middle of the top horizontal aluminum profile.

 

 

 


To make sure you have left enough free cable to allow the hot end to move freely, place the X carriage at one of it’s right or left limits. Here on the lower right corner.

Make sure to have enough free wire for the hot end to move up and down and also in each corners.

 

 


Take 3 clips, 2 long and 1 short.

They will help you to keep all the wires in place in the aluminum profile slots.

 

 

 


Start by securing your wires by placing them inside the top slot of the aluminum profile and use a long clip to keep them in place.

 

 

 

 


With the second long clip, keep in place the wires up to the electronic display.

You can let free the wires on the side. We will handle them later on.

 

 


Take the wires coming from the power supply.

We advise you to twirl the 4 cables together as it allows to easily keep them in place inside the aluminum slots. It also prevent from making any unwanted nodes with other cables later on.

 

 


Locate and take the connector from the other Z axis stepper motor that we previously placed inside the vertical aluminum profile. It should exit right next to the power supply if we refer to the previous wiring we did on this part.

 

 

 


Pass it inside the top horizontal aluminum profile and secure it with the last clip you should have.

You can use the already in place clips to secure the remaining of the wire up to the end.

 

 

 


Connect this connector on the pin header dedicated for the Z axis motor, It should be the last one remaining for the Z axis. Here at the top left of the picture.

 

 

 

 


Take the last stepper connector connected to the extruder motor.

This one must go behind the power supply and follow the sale slot used for the previous Z axis connector.

 

 


This should look like on the picture.

 

 

 

 

 


Connect it on the last pin header dedicated to stepper motors, below the stepper driver marked with « E0 ».

Here on the second row of stepper drivers on the right.

 

 


The cable will go through the same slot as the one used for the last Z axis motor wire.

 

 

 

 


Now, should remain the power supply power cables to be placed on top of the other stepper motor wires.

The clips should be able to keep all the cables into place.

 

 

 


Connect your wires on the general green power input connectors.

The whole set has polarity so make sure you connect the + output from the power supply to the + input of the board and the same goes for the Ground (minus) output of the power supply to the minus input of the board « + »-> »+ » and « – » -> « -« .

On this picture the blue cables are the « +12V » output of the power supply (yours should be red) and the brown wires are the Ground output of the power supply (yours should be black).

 

 


On the green power terminals a clear marking tells you the polarity of each terminal.

In order to emphasize the polarity of each terminal we added some sticker on the photo .

The ground cables (here in brown, yours in black) are to be connected to the « – » terminals.

The +12v power cables (here in blue, yours in red) should be connected on the other terminals marked with « + » sign.

 

 


Once all of them are connected it should look like the picture.

 

 

 

 

 

 

 


Now take the wires from the hot end fan.

 

 

 

 


Connect them on the output power terminal (here in blue) on the terminals marked with « D9 » which should be the middle terminals.

The red wire corresponding to the +12V should be connected to the terminal with « + » marking (here the 3rd on starting from the top).

Connect the remaining black wire corresponding to the « – » (ground) just below.

 


On the recent kits this fan might already be provided with a 2 pin connector

If your ramps board is provided with a « Y » shape wire extender then use it to connect the fan connector to the +12V of your ramps board.

Take the wires from the hot end.

The fan in front should be On all the time, so it will be connected to the +12V input of the board.

 

 


If you have the « Y » shaped wire extender, conserder using it . Use the following step only as an alternative solution to connect the hot end fan to the 12V Power supply.

The red wire (+12V) is to be connected on the same terminal power inputs marked with « + » along side the wires coming from the power supply.

Here we are using the 2nd green terminal starting from the top.

The black wire for the ground is to be connected to the terminal above with the « – » marking

 


Regarding the thermistor wire coming from the hot end, it is to be connector on the 2 dedicated pins marked « T0 » at the right of the thermistor dedicated to the heat bed.

Here the screw diver shows where it’s located.

 

 

 

 


Take the wires of the hot end heater cartridge.

They can be any color (often red or blue depending on the power of the heater cartridge).

 

 

 

 


The are to be connected on the last power output terminals (here in blue at the very bottom.

The heater cartridge is mainly a resistive element so it has no polarity at all and wires have no + or -, so you can connect them as you want on the last terminals at the bottom.

 


Now on the inductance probe wire, take the free red wire.

 

 

 

 


This stand alone wire is to be connected on the « + » marking of the green power input terminals. Take the one you want, here for a better repartitions, we propose to connect it to the green terminal at the very bottom.

 

 

 


The 3 pin connector with only 2 out of 3 pins are connected is dedicated to the Z min end stop.

Note: On certain kits the induction prob is provided with a 2 pin dupont connector (black) with 1 red and 1 black wire.

Warning, This connector has a polarity!

The 2 wires must always be connected on the last 2 rows of pin header with the void unconnected pin left alone for the 1 row.

On the version with 2 pin dupont connector, it must also be connector on the 2 last rows.

The green or red wire corresponds to the probe signal, so it must be connected to the signal dedicated line that is the last row.

The black wire is the ground of the probe. It must be connected to the middle row.

12V 220W Heatbed wiring

This page is explains how to wire your 12V 220W heatbed using static relay


What is a static relay?

A static relay is an electronic relay able to switch Power.

You can find different types for different voltages and different powers.

In our case 12V 220W heatbed , you will need to use a  DC-DC static relay, driven by 12V input voltage, and able to drive DC output power voltage.

This type of relay has MOSFET power transistor able to drive DC output voltage.

If you are using a 220V heatbed directly powered by your grid you will need to use a DC-AC static relay.

These have power triacs able to drive 220V alternative output voltages.

How to choose the power of your static relay?

The power your can draw out of a static relay depends on many factor. It’s type, it’s rated power, it’s ability to dissipate heat.

DC-DC Relays

For DC-DC relays , They ofent get hot very easily, so take into account to always select one with   2 or 3 times it’s nominal load.

With a 220W 12V heatbed, the max current is around 18.3A.

  • A 25A relay will be too small  (max usable load would be 12A => 144W Max)
  • A 40A relay will be just enough  (2 times the nominal load) and might get hot
  • A 60A relay ( able to support 3 times the nominal load) will be well adapted and should dissipate very little heat.

DC-AC relays

These have power tyristors or triacs.

For the 3D printer power range a simple 25A relay is enough for most usage.

If we take the Scalar XL with it’s 700W 220V heatbed,

Power(W) = Input Voltage(V) x Curent (A) x Cos Phy

Current= Power/ (Input Voltage x cos Phy)

If we take CosPhy = 0.6

Curent = 700W/(220V*0.6) => 5.8A MAX

This relay is 4.3 time more powerfull than it’s load.

Why a static relay?

With these powers, a static relay will protect you electronics from being damaged, and will also increase it’s lifepan.

If you are using Ramps boards with it’s Green power connectors, they can support only 11A.

Using more current is possible but you will need a very good cooling of the power components and of the power connector itself.

However with time you might kill the power connector, or even the Power transistor of the Ramps board.

 

 

 

 


 

Hopefully these can be easily replaced.

.

 

 

 

 

 

 

 


 

However, using a Static relay will prevent such issues.

 

 

 

 

 

 

 

 


Heatbed Wiring using the Static relay.

Directly from your power supply

If you have enough outputs on your power supply, you can connect directly the heatbed to the power supply following this schematic..

The +12V output de l’alimentation est relié directement au lit chauffant.

The heatbed output is then connectod to the « + » (pin 2) of the static relay

The  « – » (pin 1)  output is connected to the 0V of your power supply.

Pins 3 and 4 of the static relay are connected to D8 output of your Ramps board

Pay close attention to the polarity!

Between the Ramps and your static relay, you can use thin wires (24AWG for example) because very little power is transmitted to the static relay.

However, on your static relay output, make sure you are using proper wire diameter.  (use 2.5mm² wires). The bigger the diameter, the lower the power loss, and your wiresd will stay cold.

Also attache the static relay on the aluminum extrusions.

For Scalar 3d Printers, you can attach it directly on the extrusion profiles. it will be greatly spread static relay heat.

 


With terminal strips

The assembly is very similar.

We will use terminal strip to connect with the available wires.

see above comments for more details.

 

Raccordement du lit chauffant 12V 220W

Cette page est dédiée à la connexion d’un lit chauffant 12V 220W avec un relais statique.


Qu’est-ce qu’un relais statique?

Un relais statique est un relais de puissance électronique.

Il en existe différent types pour différents voltages et différentes puissances.

Dans notre cas d’un lit chauffant en 12V 220W il nous faudra prendre un relais statique DC-DC, piloté en 12V en entrée, et pouvant pilotée une charge en tension continue en sortie.

Ce type de relais possède des transistors de puissance compatibles avec des tensions continues.

Dans le cas d’un lit chauffant en 220V alimenté par votre secteur électrique, il vous faudra choisir un relais static DC-AC.

Ces derniers possèdent des Triac capable de piloter des tensions alternatives.

Comment choisir la puissance d’un relais statique?

La puissance utilisable d’un relais statique dépend beaucoup de son type et de la qualité de refroidissement de ce dernier.

Relais DC-DC

Pour des relais DC-DC, ces derniers chauffent beaucoup donc choisir toujours un relais 2 à 3 fois plus puissant par rapport à votre charge nominale.

Dans notre cas d’un lit en 220W 12V le courant max est de l’ordre de 18.3A.

  • Un relais donné pour 25A sera trop juste (prévoir une charge maximale de 12A => 144W Max)
  • Un relais donné pour 40A sera limite  (2 fois la charge nominale) et dissipera une chaleur relativement importante.
  • Un relais de 60A ( plus de 3 fois la charge nominale) sera bien dimensionné et dissipera très peut de chaleur.

Relais DC-AC

Ces relais possèdent des thyristors de puissance.

Au niveau des gammes de puissances utilisées dans les imprimantes 3D un simple relais de 25A est largement sur dimensionné par rapport à l’utilisation réelle.

Prenons le cas de la Scalar XL avec sont lit chauffant de 700W 220V,

Puissance (W) = Tension d’entrée(V) x Courant (A) x Cos Phy

Courant = Puissance / (tension d’entrée x cos Phy)

Si on considère un CosPhy de = 0.6

Courant = 700W/(220V*0.6) => 5.8A MAX

Le relais est donc 4.3 fois plus puissant que la charge utile.

Pourquoi un relais statique?

A ces puissances, un relais statique protègera votre électronique et sera mieux dimensionné aux courants utilisés.

Si vous utilisez une Carte Ramps avec un connecteur de puissance vert, ce dernier est dimensionné pour supporter 11A.

L’utilisation de courant plus fort fonctionnera si vous utilisez une bonne ventilation de vos composants.

Cependant avec le temps vous allez détériorer vos composants et le bornier d’alimentation peut alors se détruire

 

 

 

 


 

Les borniers d’alimentation sont démontable et peuvent se changer.

.

 

 

 

 

 

 

 


 

Cependant l’utilisation d’un relais statique adapté est hautement recommandé voir nécessaire/obligatoire dans certains cas.

 

 

 

 

 

 

 

 


Connexion du lit chauffant à votre électronique

Directement sur votre alimentation

SI vous avez suffisamment de place sur votre alimentation, vous pouvez connecter votre montage comme montré sur ce schéma.

Ici le +12V de l’alimentation est relié directement au lit chauffant.

La sortie du lit chauffant est alors connecté à la sortie  « + » (pin 2) de votre relais statique.

La sortie « – » (pin 1) de votre relais statique est alors connecté au 0V de votre alimentation.

Les pins 3 et 4 du relais statique se connecter alors à la sortie D8 de votre Ramps.

Ici attention à la polarité!

Entre la carte Ramps et votre relais statique vous pouvez utiliser des fils relativement fin (24AWG par exemple) car aucune puissance n’est transmise au relais.

Par contre en sortie de relais, prévoyez de bien dimensionner vos fils de puissance (prévoir 2.5mm² ). Plus la section de vos fils sera importante, plus vous limiterez les pertes en lignes et plus votre fils restera froid.

Il faut prévoir aussi de fixer votre relais statique sur un dissipateur.

Dans le cas des imprimantes 3D Scalar, vous pouvez les fixer directement sur les profilés qui feront office de dissipateur thermique.

 


Avec un Domino

ici le montage est très similaire,

On utilisera un Domino pour faire la jonction avec les fils déjà disponible.

Le branchement est similaire au montage précédent (voir commentaires sur la section précédente).

 

LJ12a3-4-z/bx Inductive probe Wiring

Inductor Probe

This probe is used on many modern 3D printers with metallic heat beds for Autoleveling purpose.

It’s cheap and robust in design and can handle the heat of the heatbeds.

Voltage Consideration

It’s always/mostly provided as a 6-36V version wich is not compatible with standard Micro controller boards requiring 3.3-5V input voltage (for most 8Bit micro controllers such as Atmega 2560).

If you try to use 5V input voltage the probe won’t work at all.

To asses this constraint, people are powering the probe using the 12V input voltage.
To make the output compatible with TTL (0-5V) input level voltage, the cheap way to do it is to solder a resistor bridge as shown on this picture:

(source: forums.reprap.org/read.php?1,430371,596450)

As a reminder, on the probe itself you should find a wiring diagram:

With brown wire = +12V input
Black wire = Signal Ouput
Blue wire = 0V (Ground)

From the Previous Schematic 

  • Vin = Brown wire
  • Sig = Black wire
  • Vout = Blue Wire

Overall Wiring diagram

If you are using the Probe wiring diagram, you will need to invert the resistor bridge:
The 10K resistor will be placed on the very left side
The 15K resistor will be placed on the middle of the schematic.
The final wiring diagram should look like this one:

Alternatives:
Instead of the 10Kohm resistor you can also use a 9Kohm resistor, if you keep the 15K resistor.This should give you something close to 4V output
You can also use a 20K resistor instead of 15K resistor, if you keep the 10K resistor. This should give you a voltage close to 4V output also.

Important Note:
The probe signal output voltage is slightly lower than the input voltage. So if you apply 12V input voltage you will have a signal output voltage lower than 12V.
Consider this if using the alternative solutions as they might not work that well.

Electronic assembly

List of parts :

  • 4  A4988 stepper drivers
  • 1 Arduino Mega 2560 (Funduino Mega)
  • 1 Ramps 1.4
  • set of jumpers  (optional)
  • 1 LCD 2004 display
  • 1 electronic plastic support
  • 2 triangular shape plastic support for LCD
  • 8 M3x10mm screws
  • [not provided] Screw diver

Arduino board preparation

Take the electronic plastic support  with 3 M3X10 screws  and the Arduino Mega board (here Funduino Mega)

 

 

 


Screw the arduino board with 3 screws, you will find 4 dedicated holes for that purpose, and some screws won’t fit some holes.Make sure you place the electronic board the same way as on the picture (the logo on the plastic support can give you some hints.

The plastic support has a direction as the holes for the arduino are not symmetrical.

The screws should fit on the top left corner, and at the bottom of the board (see picture)

It can happens that some screw heads won’t fit some holes and get stuck against the plastic connectors.

Try with some smaller screw heads if you have some.

If not only 2 or 3 screws should be enough, the main purpose is to keep the board attached on it’s support.


 

Ramps 1.4 assembly

Now take the Ramps board.

The jumpers should already be in place. If not you will have to place them on the proper pin header.

The jumpers are needed to configure the micro-steps used by the stepper drivers.

Placing 3 jumpers per stepper motor driver will configure them to use 16 micro-steps per step.In other words a stepper motor able to make 200 steps will see it’s possible amount of steps multiplied by 16 thanks to the stepper drivers.

 


Place the jumpers like on the picture. Between the rows of black female connectors between the capacitors( Round metallic components).

 

 

 


 

Arduino / Ramps Assembly

The next step is to assemble both boards together.

 

 

 

 


For this you need to place the ramps board (in red here) on top of the arduino board (here in blue).

The male connectors below the ramps board should align with the black female connectors of the arduino board.

Slightly press the Ramps board toward the arduino board.

Be very careful than all the pins or the ramps board are straight and fit perfectly into the female connectors.


 

Setup of A4988 stepper motor drivers

Now take the stepper motor drivers. It’s some small square modules . This model is provided usually with some small heat-sink with some tape below.

 

 

 


Return it them and remove the tape protection from them.

 

 

 

 


Place it on top on the bigger square chip set next to the variable resistor (the small trim).

Warning: Be very careful not to make any contact between the heat-sink and the other components surrounding it as well as the nearby pins.

 

 


Here a lateral view show how the heat sink is placed.

Also take care to avoid any contact with components that could be below the heat-sink.

 

 

 


A face vie showing the spacing between the heat sink and the pins on the side. If possible add more clearance than on the picture

 

 

 

 


Prepare another 3 of those modules.

At the end you should have 1 spare part . It can be useful if for any reason one of your stepper drivers get deteriorated or fail. You can also use it if you plan on using a 2nd extruder / hot end.

 

 


 

Placement of stepper motor drivers on the Ramps board

The next step is to assemble the stepper drivers on the ramps board.

 

 

 

 


Place the first driver on top of it’s dedicated slot.On the markings you should be able to locate the « X », « Y », and « Z ».

Those drivers are used to drive stepper motor on X, Y and Z axis.

Be very careful about how you insert the drivers as it has a polarity and cannot be reversed.

The potentiometer (trim) must be placed so that it’s in the opposite direction of the Green power supply input connector. The photo shows you an example.

WARNING: Double check the orientation of the drivers before going any further. If you invert the position you will destroy the chip.


 

Do the same for the whole row.

Once the 3 drivers are mounted the whole set of available female pins should be used!

If you have 1 of the stepper driver that has his pins not connected to anything, then you will need to replace properly the stepper drivers one by one.

 

 


Now insert the last stepper driver.

This last one is used to drive the extruder motor.

It’s dedicated placement is at the lower right of the board next to the output power supply terminals (here in blue).

The marking on the board should say « E0 »

 


Now you can place the green female connector on the power supply terminals.

 

 

 

 

 


 

LCD Setup

Prepare the LCD display and it’s associated plastic supports.

Take 4 M3X10 screws that will help you to fix the LCD on it’s supports.

On the 4 corners of the display you will find 4 screw holes for M3 screws.

 

 


Screw them so that the LCD knob is at the right of the LCD display.

 

 

 

 


Do that for both supports.

you should get something like the picture.

 

 

 

 


 

Connection of the LCD to the Ramps board

Now you still need to connect the LCD to the electronics previously prepared.

 

 

 

 


The LCD connector is like the picture with 1 set of long row of black female connector and a second set of 2×4 pin female connector.

 

 

 


On the opposite side of the green power connector you will find the corresponding set of male pins.

The LCD display connector is to be plugged on top of them.

The picture here shows you the end result.

Here be very careful that all the male pins are aligned with the female slots.

Warning:Sometimes a few pins might be slightly twisted.

With a flat screw diver slightly  straighten them without any force so that they will fit their corresponding female slots

 

 

Fixation of electronics on the chassis

 

Notice:

Electronic box V1.0:

Inside some kits, an electronic box is provided already assembled.

The electronic inside might already be installed.

In this cas just place the box on the top of the chassis at the same location as the electronic support at the bottom of this page.

In the other case, the assembly is very similar, the arduino is to be screwed first and then the Ramps board comes on top of it.

The 4 holes are asymetrical, so the USB  connector of the arduino board and the Power terminals of the Ramps board should all exit on the right side of the box. On this picture, they should exit at the bottom of it.

The LCD scree is to be screwed with 4 M3x8mm screws on it’s dedicated support.

The support will then be screwed on the other part of the box using 4 M3X20mm screws.

Electronic Box V1:

The fan grid will directly be screwed using 4 M3X8mm.

 

 

 

 

 

 

 

 

 

 

 

 

The electronic box can be mounted on the printer as shown on these pictures

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

Electronic Box V2.5:

Starting from V2.0 the electronic box has became modular.

Each wall of the box is a separate plastic part that can be upgraded, changed, adapated depending on your needs.

 

 

 

 

 

On this picture you can see that each part is independent from each other and can be assembled easily.

On version 2.5 of the box the 80mm fan is placed on the back of the box and the LCD screeen is switch from front to back.

The left side has now a simple grid for airflow output.

Here is a picture of the box assembled.

 

 

 

And here a view of the box from the side.

 

 

 

 

 

 


 

How to mount Box V2.5:

 

The location of the box is exactly the same as previously.

The change here is the location of the 80mm fan, now placed at the back of the box.

The main change from Version 2.0 is the position of the LCD screen.

The front of the printer now becomes the back and vice versa.

Here is the view from the other side of the printer.

The Z axis stepper motors are now facing you and you have direct acces to the hot end.

The spool holder is now on your right.

 

 

here is a close look of the box showing you that the LCD screen has more stability, as it’s closer to the top extrusion profile.

 

 

 

 

 

 


Standard Case

List of parts :

  • 1 Arduino + ramps + LCD already assembled
  • 5 M6x12mm screws
  • 5 M6 T-Nuts
  • [provided] 1 allen key

Take the LCD module previously assembled and prepare the M6 Screws + T-Nuts.

Place  2 screws and the outside of the plastic parts.

 

 

 


Now take the Arduino plastic support .

Take it so that the Scalar logo is oriented toward the top, then place 3 sets of T-Nuts+Screws on the following corners:

  • Top right
  • bottom right
  • bottom left

When looking at the machine from behind, place the previous parton the top right corner, it’s the corner where the X axis motor is located as shown on the photo.

Now screw the electronic module so that the LCD module is located on the top aluminum extrusion and the other electronic module fixed on top right corner of the 2 aluminum profiles .

The 2 top screws are screwed on the top extrusion, and the 3rd bottom right screw is tightened on the side extrusion.

In order to keep a clean way for future cable sets, you can place the exceeding LCD wires between the square holders of the chassis and the plastic electronic support.


Here is a global front view of the LCD located at the top left corner.

 

 

 

 


 

For those having the LCD box,  It’s placed at the same location as the other model.

Here the picture shows the back of the printer (the opposite side as the previous picture).

The front of the LCD is placed on the same side as the power supply, but on the right side.

 

 

 

 

Power supply wiring on chassis

List of parts :

  • 1 long clip (plastic part)
  • 1 short clip (plastic part)
  • 1 spool holder X10 (plastic part)
  • 2 M6X12mm screws
  • 2  M6 T-Nut
  • [not provided ] 1 power supply cable
  • [not provided ] 1 screw diver
  • [provided] 1 Allen key

The best is to rotate the printer chassis as shown in the picture. The purpose is to make it easier to place the T-Nuts inside the aluminum profile Slot.The spool holder is made so that you cannot pre mount the screws + T-Nut before placing the plastic part.

 

 


Focus on the Z axis motor wire.

The goal here is to place it inside the aluminum profile slot.

 

 

 


 

Place it as shown on the picture .

 

 

 

 

 


The other side of the wire must exit on the top of the power supply module.

This cable will then get inside the slot the is maintaining the extruder module.

It should go behind the power supply plastic cover.

 


 

Slide it inside the slot so that it’s in place for the future wiring steps.

 

 

 

 

 


The wiring should look like this.

 

 

 

 

 


 

Connect the end of the 220V power supply plug to the power supply.

Then slide the cable inside the same slot used for Z axis stepper motor wire.

 

 

 


 

Now take a « short » clip.

Those clips are made to be clipped on top of the aluminum profile slot and only secure one side of the aluminum extrusion.

When you place it over the aluminum extrusion you should hear a « click » meaning it’s properly in place.

 

 


 

This clip will be used to secure the base of the cables inside the aluminum extrusion slot.place it just near the z axis motor support.

 

 

 

 


 

Now take a « long » clip.

This model allows to close 3 sides of the aluminum extrusion at once.

 

 

 

 


 

Place it at the other top end of the machine, just behind the power supply module. The U shape must allows you to keep in place wires that are on the side where the use of the short clip would be impossible.

 

 

 


Here, a bottom view showing the long clip in place.

 

 

 

 

 


You now need the spool holder with the « X10″ marking » .

This plastic part’s purpose is to hold and keep in place the plastic filament during printing.

 

 

 


Place it on the side as shown on the picture, perpendicular to the power supply module.

The best is to place it as close as possible from the extruder (so to the top of the machine) .

 

 

 


Here the inclined position should help you to align the T-Nuts with the fixation holes of the spool holder.

You can use a small screw diver to keep the T-Nut in place while inserting the M6 screw.

 

 


 

Once in place, just add the M6X12mm screw.

This should look like the picture.

 

 

 

 


Secure it with a 2nd set of T-Nut/Screw and that’s it..

 

 

 

 

 

 

Electronic wiring – Scalar S – L – XL premium

Electronic Wiring on Ramps 1.4 board

5V or12V probe? Careful choose your schematic

  • 12V probe has 1 Dupont 2 pins connector and 1 red wire left over
    • Red wire left over: +12V
    • Black wire: 0V- Ground
    • Red wire in connector: Signal.

 

 

 

 

Here is the wiring diagram to use


  • 5V  probe has only 1 Dupont connector with 3 pins.
    • Brown wire (+5V)
    • Blue wire (0V – GND)
    • Black wire (Signal)

 

  • 5V  probe can be provided with and extender with different colors
    • Red wire (+5V)
    • Black wire (0V – GND)
    • White wire (Signal)

The wiring on the electronic board is similar to the previous version of this probe.

  • The Red wire corresponds to the Brown wire
  • The Black wire corresponds to the Blue Wire
  • The White wire corresponds to the Black wire

Here is the wiring diagram to use


 

 

Schematic for 12V proximity sensor

Electronic wiring on Ramps 1.4

On this 2nd schematic, ou will find a schematic closer to what is provided within the kit. With the induction probe, the hot end fan ad the auxiliary blower fan.

On the induction probe, it is provided with 3 wires. 2  (red and black) are connected to a Dupont 2 pin connector, and 1 (red) left alone with a node here, is the power supply of the probe.

Schematic for 5V proximity sensor

Brachement électronique de la carte Ramps 1.4 avec sonde à inductance 5V

This schematic corresponds to the kits provided after 17th October 2016.

This kit is provided with a 5V proximity sensors. The blue wire is the ground wire. The black wire is the signal wire and the brown wire is the +5V powe wire.

If your probe is not provided with a 3pin black connector, please look at the other schematics.

A Y shape wire extender is also provided. It’s directly connected to the 12V power output of the Ramps board and will help you to connect the hot end fan power supply to the +12V. It will also be used to connect the 80mm 12V fan dedicated to cool down your electronics.

 

You should be able to recognize the other components now. The wire’s color on the stepper motors are only for information, the one provided might have a completely different set of colors. The one on the power terminals are real colors with the red wire corresponding to +12V and the black wire to the ground wire (0V)

 


Ramps 1.4 Schematic

Ramps 1.4 Schematic

For information purpose here is the official schematic of the Ramps 1.4 board. It is the same you will find on the official reprap wiki  .

This schematic give you more data on all the pin out and also on the optional headers.

 

 

A word about the Big green power terminal

Ramps 1.4 power terminalsYou need to understand that the Green power connector on the left of the schematic picture is a Plug connector,

Meaning that the big part with the terminals can be removed from it’s base.

The picture here shows the 2 different parts:

  • On the left the terminal part that can be removed/unplugged
  • On the middle the fixed part, soldered on the ramps board
  • On the right side, the 2 parts attached together.

 


 

As visual support here is a picture of the electronic board free from any cables.

If you want compare directly with the previous schematic, you will need to make a 180° rotation as the power terminals are on the right on this picture and on the left on the previous schematic