Archives par étiquette : heatbed


Scalar S – Dual drive system bed upgrade

Dual drive system upgradeThis page describes the installation of the Dual drive system bed upgrade for Scalar S 3D printer.

It postulates that you have the standard version of the Scalar S, and that you are upgrading your Y Axis.

This upgrade is a mechanical upgrade only.

It doesn’t require any firmware updates.



Bed disassembly

scalar S, upgrade plateau à double entraînement

Removing belts

In order to continue, it’s best that you remove the belt already installed.

Keep it close as you will need it very soon.

Y axis positioning

Rail assembly

Check the procedure here

Installation of the new axis

2 sides synchronization

Remove the black screw already in place.

Keep it safe for future use.

Take great care to the pulleys directions

Do not tighten the pulleys

Tighten the stabilization screws

These screws are here to stabilize the extrusion profile, to prevent it from rotating.

Back view of the printer, we install the M5x35 black screws that we kept from earlier.

New lower plate installation

Heat plate installation

Belts installation

Follow this procedure

Bed alignment

This step allows to make sure that your bed is properly aligned to your chassis

This step takes into account that your pulleys are not tighten on their shafts. They must remain loose until the end of this alignment procedure.

Once you have checked that one side is aligned, you can tighten the red extrusion holders on the chassis on one side only.

Here we are tightening the right side. It will allow us to align the other side more easily


Slide the bed toward the back of the printer. The left axis should align itself once the bed has reach the end stop.

Hold the plastic support and tighten it on the chassis.

Now, slide again the bed toward the front of the machine this time. Once at the end, hold the plastic holder and tighten it on the chassis.


You can check that the bed is centered using the hotend. It should be able to move over the whole heatbed surface. You can adjust the position of the X end stop in order to fix potential centering issues.

Your heatbed should move freely back and forth with no issues linked to parallelism.

Also your bed should be properly aligned to your chassis now. You can check that by moving the bed edge to the front of your chassis. Using a ruler, you should see that the bed is parallel to the front of the chassis on both sides (right and left).

Tightening the Pulleys

Now that your bed is properly aligned and centered you can tigthen the 4 pulleys  and you are done!

Heatbed upgrade – extrusion profiles supports

heatbed holder

Notice about GT2 pulleys

The gt 2 pulleys on the pictures here are show only as an information. You will install them later on.


List of parts:

  • 3 extrusion profiles supports (plastic part)
  • 1 extrusion support with end stop (pièce plastique)
  • 8 x 625ZZ bearings
  • 8 x  M6x12mm screws
  • 8 x M6 TNuts
  • 4 GT2 16 teeth pulleys
  • 1 cable tie

Assembly process

Take the plastic part

Use 2x625ZZ bearings

These 2 bearings will be inserted inside specific grooves of the plastic part.

How to place the later GT2 pulleys

The GT 2 pulley will then come between the 2 bearings.

Special note:

In order to align later on the belt, the pulley will need to be laid against 1 of the bearings. In order to keep the symetric aspect of this part, you will get a small void between the other side of the pulley and the other bearing.


The location of the pulley will be explained later on

Repeat the same logic on the 2 other parts. You should get 3 identical parts.

End stop holder.

The procedure is the same here

The only difference is the special location where you need to install the end stop

Note however the location of the en stop wheel pointing up.


Warning, this end stop holder has been updated starting Avril 2017

Here is the new version

In order to keep track of previous parts,  here is the old version.(before Avril 2017)

Once assembled

Again the pulleys cann be held right now and are shown only for further comprehension

Preparing the nuts and screws

The final phase here is to prepare all the M6X12mm screws and their Tnuts that we will use later on.

You will need :

  • 8 x M6x12mm screws
  • 8 x M6 Tnuts

The side holes on the plastic parts are used to install these screws and Tnuts


12V 220W Heatbed wiring

This page is explains how to wire your 12V 220W heatbed using static relay

What is a static relay?

A static relay is an electronic relay able to switch Power.

You can find different types for different voltages and different powers.

In our case 12V 220W heatbed , you will need to use a  DC-DC static relay, driven by 12V input voltage, and able to drive DC output power voltage.

This type of relay has MOSFET power transistor able to drive DC output voltage.

If you are using a 220V heatbed directly powered by your grid you will need to use a DC-AC static relay.

These have power triacs able to drive 220V alternative output voltages.

How to choose the power of your static relay?

The power your can draw out of a static relay depends on many factor. It’s type, it’s rated power, it’s ability to dissipate heat.

DC-DC Relays

For DC-DC relays , They ofent get hot very easily, so take into account to always select one with   2 or 3 times it’s nominal load.

With a 220W 12V heatbed, the max current is around 18.3A.

  • A 25A relay will be too small  (max usable load would be 12A => 144W Max)
  • A 40A relay will be just enough  (2 times the nominal load) and might get hot
  • A 60A relay ( able to support 3 times the nominal load) will be well adapted and should dissipate very little heat.

DC-AC relays

These have power tyristors or triacs.

For the 3D printer power range a simple 25A relay is enough for most usage.

If we take the Scalar XL with it’s 700W 220V heatbed,

Power(W) = Input Voltage(V) x Curent (A) x Cos Phy

Current= Power/ (Input Voltage x cos Phy)

If we take CosPhy = 0.6

Curent = 700W/(220V*0.6) => 5.8A MAX

This relay is 4.3 time more powerfull than it’s load.

Why a static relay?

With these powers, a static relay will protect you electronics from being damaged, and will also increase it’s lifepan.

If you are using Ramps boards with it’s Green power connectors, they can support only 11A.

Using more current is possible but you will need a very good cooling of the power components and of the power connector itself.

However with time you might kill the power connector, or even the Power transistor of the Ramps board.






Hopefully these can be easily replaced.










However, using a Static relay will prevent such issues.









Heatbed Wiring using the Static relay.

Directly from your power supply

If you have enough outputs on your power supply, you can connect directly the heatbed to the power supply following this schematic..

The +12V output de l’alimentation est relié directement au lit chauffant.

The heatbed output is then connectod to the « + » (pin 2) of the static relay

The  « – » (pin 1)  output is connected to the 0V of your power supply.

Pins 3 and 4 of the static relay are connected to D8 output of your Ramps board

Pay close attention to the polarity!

Between the Ramps and your static relay, you can use thin wires (24AWG for example) because very little power is transmitted to the static relay.

However, on your static relay output, make sure you are using proper wire diameter.  (use 2.5mm² wires). The bigger the diameter, the lower the power loss, and your wiresd will stay cold.

Also attache the static relay on the aluminum extrusions.

For Scalar 3d Printers, you can attach it directly on the extrusion profiles. it will be greatly spread static relay heat.


With terminal strips

The assembly is very similar.

We will use terminal strip to connect with the available wires.

see above comments for more details.


Raccordement du lit chauffant 12V 220W

Cette page est dédiée à la connexion d’un lit chauffant 12V 220W avec un relais statique.

Qu’est-ce qu’un relais statique?

Un relais statique est un relais de puissance électronique.

Il en existe différent types pour différents voltages et différentes puissances.

Dans notre cas d’un lit chauffant en 12V 220W il nous faudra prendre un relais statique DC-DC, piloté en 12V en entrée, et pouvant pilotée une charge en tension continue en sortie.

Ce type de relais possède des transistors de puissance compatibles avec des tensions continues.

Dans le cas d’un lit chauffant en 220V alimenté par votre secteur électrique, il vous faudra choisir un relais static DC-AC.

Ces derniers possèdent des Triac capable de piloter des tensions alternatives.

Comment choisir la puissance d’un relais statique?

La puissance utilisable d’un relais statique dépend beaucoup de son type et de la qualité de refroidissement de ce dernier.

Relais DC-DC

Pour des relais DC-DC, ces derniers chauffent beaucoup donc choisir toujours un relais 2 à 3 fois plus puissant par rapport à votre charge nominale.

Dans notre cas d’un lit en 220W 12V le courant max est de l’ordre de 18.3A.

  • Un relais donné pour 25A sera trop juste (prévoir une charge maximale de 12A => 144W Max)
  • Un relais donné pour 40A sera limite  (2 fois la charge nominale) et dissipera une chaleur relativement importante.
  • Un relais de 60A ( plus de 3 fois la charge nominale) sera bien dimensionné et dissipera très peut de chaleur.

Relais DC-AC

Ces relais possèdent des thyristors de puissance.

Au niveau des gammes de puissances utilisées dans les imprimantes 3D un simple relais de 25A est largement sur dimensionné par rapport à l’utilisation réelle.

Prenons le cas de la Scalar XL avec sont lit chauffant de 700W 220V,

Puissance (W) = Tension d’entrée(V) x Courant (A) x Cos Phy

Courant = Puissance / (tension d’entrée x cos Phy)

Si on considère un CosPhy de = 0.6

Courant = 700W/(220V*0.6) => 5.8A MAX

Le relais est donc 4.3 fois plus puissant que la charge utile.

Pourquoi un relais statique?

A ces puissances, un relais statique protègera votre électronique et sera mieux dimensionné aux courants utilisés.

Si vous utilisez une Carte Ramps avec un connecteur de puissance vert, ce dernier est dimensionné pour supporter 11A.

L’utilisation de courant plus fort fonctionnera si vous utilisez une bonne ventilation de vos composants.

Cependant avec le temps vous allez détériorer vos composants et le bornier d’alimentation peut alors se détruire






Les borniers d’alimentation sont démontable et peuvent se changer.










Cependant l’utilisation d’un relais statique adapté est hautement recommandé voir nécessaire/obligatoire dans certains cas.









Connexion du lit chauffant à votre électronique

Directement sur votre alimentation

SI vous avez suffisamment de place sur votre alimentation, vous pouvez connecter votre montage comme montré sur ce schéma.

Ici le +12V de l’alimentation est relié directement au lit chauffant.

La sortie du lit chauffant est alors connecté à la sortie  « + » (pin 2) de votre relais statique.

La sortie « – » (pin 1) de votre relais statique est alors connecté au 0V de votre alimentation.

Les pins 3 et 4 du relais statique se connecter alors à la sortie D8 de votre Ramps.

Ici attention à la polarité!

Entre la carte Ramps et votre relais statique vous pouvez utiliser des fils relativement fin (24AWG par exemple) car aucune puissance n’est transmise au relais.

Par contre en sortie de relais, prévoyez de bien dimensionner vos fils de puissance (prévoir 2.5mm² ). Plus la section de vos fils sera importante, plus vous limiterez les pertes en lignes et plus votre fils restera froid.

Il faut prévoir aussi de fixer votre relais statique sur un dissipateur.

Dans le cas des imprimantes 3D Scalar, vous pouvez les fixer directement sur les profilés qui feront office de dissipateur thermique.


Avec un Domino

ici le montage est très similaire,

On utilisera un Domino pour faire la jonction avec les fils déjà disponible.

Le branchement est similaire au montage précédent (voir commentaires sur la section précédente).


Heatbed V2 Assembly (Full Aluminum)

List of parts:

  • Scalar S : 1 silicone heater (190x190mm 250W 220V)
  • Scalar S: 1 aluminium plate (220x230x2mm) (Base)
  • Scalar S: 1 aluminium plate (220x230x3mm) (Plate)
  • Scalar M : 1 silicone heater (300x200mm 400W 220V)
  • Scalar M: 2 aluminium plates (300x220x3mm) (Base + plateau)
  • Scalar L : 1 silicone heater (300x300mm 600W 220V)
  • Scalar L: 2 aluminium plates (300x330x3mm) (Base + plateau)
  • Scalar XL : 1 silicone heater (400x300mm 700W 220V)
  • Scalar XL: 2 aluminium plates (435x320x3mm) (Base + plateau)


  • Scalar XL Premium : 1 silicone heater (400x300mm 700W 220V)
  • Scalar XL Premium: 2 aluminium plates (435x320x3mm) (Base + plateau)


  • 1 aluminium sheet used for cooking
  • 1 wired thermistor (1 meter)
  • 1 pen
  • 1 pair of scissors
  • 1 50mm polyimide/Kapton tape
  • 1 piece of aluminium tape



Take the aluminium plate corresponding to your print surface.

It has only 4 holes, one on each corners.




This pate has 1 face with a protection film and the other face with a raw surface.

In this picture you can see the face with the protection film.

This face is used for printing.



The other side with raw aluminium is destined to be the bottom of the heatbed where you are going to stick the heating element and the thermistor.

Take the raw side of the plate in front of you.





Place the heating element (orange) – don’t stick it yet – and place it in the middle of the aluminium plate..

Place some markings so that the silicone heater is at the center of the aluminium plate.

This pictures shows the example of the Scalar XL.

The silicone surface is smaller on all sides than the aluminium plate..



This picture shows the example of Scalar M.

Here the silicone heater has the same length but smaller width.

Make sure to have enough space around the corner-holes for later use.



Place some markings on the sides of the silicone heater.

This will help you later on to stick the silicone heater in the center.



Do the same at the top and bottom of the plate for Scalar M and also on the sides for Scalar XL.





Now take your thermistor .

Place it so that the end of the thermistor is located at 1/3rd of aluminium plate length from the side.




This will allow you to reuse the maximum of the thermistor wire’s length and keep a goo thermistor placement..






Take a small piece of aluminium tape (or Kapton / Polyimide tape) that will help you secure the thermistor end.

The main point in using these kind of tape is that they can support heats over 110°C..



here a picture showing the overall placement of the thermistor.





Once the thermistor ending secured your assembly should look like the picture.





In order to finalize thermistor placement, it’s interesting to stick the wires right on the edge of the aluminium plate..










Here is a picture showing the thermistor fully secured.







Now you can remove the 3M tape from the silicone heater .




Place it on the aluminium plate using your previous markings to make sure it’s centered.

make sure to properly press on all the surface of the silicone hater in order to evenly stick it on the aluminium plate.



Th thermistor should be right between both aluminum plate and silicone heater.

This ensures that the thermistor is properly secured and will provide proper measurements.




in order to optimize the thermal insulation, you can use aluminium sheets used for cooking so that it covers the maximum surface of the silicone heater..

Make sure that you remove the part of the aluminium sheet that extends over the silicone element..

This will help you to secure the aluminium sheet using kapton tape.


The aluminium sheet should have 2 different faces

  • 1  « mirror » side
  • 1 « mate » side
  1. Make sure to place the « mirror »  side toward the silicone heater. This will increase the efficiency of the aluminium sheet and will reflect a maximum of Infra-red radiation toward the useful part of the heatbed.
  2. Then push it against the silicone heater. it should stick naturally to it.
  3. Cut the excess of aluminium sheet that goes past the silicone heater surface.
  4. Secure the aluminium sheet with kapton tape and make sure to avoid air bubbles.
  5. Cut the parts of Kapton/polyimide tape that goes past the aluminium plate using a scalpel or a cutter.



First use cautions


This page  purpose is to help you to check a few points before using your 3D printer in order to avoid any possible known issues.

Check that the stepper motors are properly connected to the stepper drivers on the Electronic board..

Check that the stepper motors are properly connected on your electronic board before powering on. The drivers don’t support to be powered on without any motors attached.

In certain cases you can damage them and the stepper motors will react in a random manner.

Precautions to take before powering your heatbed.

Certains heatbeds can use up more than 200W.

Depending on how the heatbed it driven, you will need to check that the driving power transistor is properly cooled down, and that there is a proper airflow around it.

On Scalar M, the heatbed is conected directly on the power transistor.

It’s mandatory that the 80cm fan inside the electronic box is connected, powered and generates a good airflow.

On Scalar XL, the 700W 220V heatbed is powered through a separate 25A solid state relay.

The 80 cm fan is then used to cool down the stepper motors drivers in order to keep optimal performances.

Keep the stepper drivers always close to ambiant temperature.

Stepper motors drivers are responsible to properly driver the stepper motors. When they get hot, the avaiable power drops and you might get some missed steps after a few hours of printing.

PLA and FullMetal hot ends (E3D or AllInOne)

With Full metal hot ends, if you are using PLA, it’s MANDATORY to keep the hot end’s heatsink cool.

These hot ends are provided with auxiliary fans wich purpose is to keep them close to ambiant temperature.

if the fan is not running, is stopped or that the airflow is not enougth, PLA will expand inside the hot end.

Expnading PLA inside your hot end will, if you are lucky, only expand on a small portion of the hot end. You should still be able to push or pull it from the hotend manually using some pliers.

In other cases, it can expand out of the hot end’s heatsink.

in this case you will need to deassemble the hotend, clean it and fix your fan cooling issue.

Precautions to take before switching off your 3D printer

Some plastics will expand on full metal hot ends if you switch off your 3D printer while the hot end is still hot.

To avoid possible issues with plastic expantion, make sure the hot end temperature goes below 75°C before switching off your 3D printer

Build platform assembly

List of parts :

  • 4 LM8UU bearing supports (Plastic)
  • 4 linear bearingsLM8UU (If they are not already mounted on their supports, please mount them)
  • 10 wood screws
  • Scalar XL: 1 wood plate 435x320mm
  • Scalar M: 1 wood plate 300x220mm
  • 4 plate supports (Plastic)
  • 8 M6X12mm screws
  • 8 T Nuts
  • 4 cable ties
  • [not provided] 1 philips screw diver
  • [not provided] 1 hammer
  • [not provided] 1 pen
  • [not provided] 1 ruler (ideally 30 to 40 cm)

Wood plate preparation

List of parts :

  • 4 LM8UU linear bearing supports
  • 4 LM8UU linear bearings
  • 10 wood screws
  • Scalar XL: 1 wood plate 435x320mm
  • Scalar M: 1 wood plate 300x220mm
  • [not provided] screw diver
  • [not provided] hammer
  • [not provided] pen
  • [not provided] ruler (ideally 30 to 40 cm)


Scalar XL: Here are the different measurements of the plastic parts below the headbed.:







Scalar M: Here are the same measurements for the Scalar M heatbed






Note importante:

On he previous pictures, you will notice a red plastic part.  It correspond to the linear bearing holder with a special hole for the adjustment screw.





This plastic part is to be placed in front of the smooth rod holders with the embedded end stop. An adjustment screw will later on be installed





Take your wooden plate and face it so that the length of it goes from your left to your right and the height from the bottom to the top.

Now consider your starting point to be the lower left corner of the wooden plate.

Scalar XL:Take a ruler and measure 105mm (10,5cm) from the bottom of the plate as shown on the picture.

Scalar M: Same operation but with 15mm (1.5cm)


Do the same all along the bottom of the plate in order to trace a straight line parallel to the bottom of the plate.


(Scalar XL) 105mm / (Scalar M) 15mm




Take the last point on the right side of the plate.





Trace a line from the left to the right passing by all your points at  (Scalar XL) 105mm / (Scalar M) 15mm from the bottom of the plate.





Do exactly the same but for the top of the plate:





Take some intermediary points:





And the last one on the right side.

Now trace again the straight line passing by all your previous points located at (Scalar XL) 105mm / (Scalar M) 15mm from the top of the plate.





From the last line measure (Scalar XL) 208mm / (Scalar M) 141mm from the left of the plate right on the line you have just traced at the top of the plate.




Do the same with the line at the bottom :





Join both points with a straight line.





Now take a your starting point this new line perpendicular to the bottom of the plate. Measure (Scalar XL) 28mm  / (Scalar M) 65mm from the bottom line



Now trace a quick line of 2 or 3cm parallel at the bottom line.






bearing placement:

List of parts :

  • 4 LM8UU linear bearings (1 has an embedded hole for an adjustment screw )
  • 10 wood screws
  • Scalar XL: 1 wooden plate 435x320mm
  • Scalar M: 1 wooden plate 300x220mm
  • [not provided] screw diver
  • [not provided] hammer
  • [not provided] 1 pen

Take the first linear bearing and place it along the left side of the wooden plate, jut above the bottom line you traced earlier:( Warning: On this picture the plastic part is outdated)




Take the second linear bearing and this time place it below the top line you trace earlier:




Do the same for the right side of the plate:

Place the belt holder plastic part in the middle of the plate. The back of the plastic part is to be placed on the right of the vertical line you traced on the center of the plate and just above the very last small vertical line you traced.

The picture should be very explicit.



Here is a view of everything positioned on the wooden plate.





Take a pen and make a mark at the location of each screw holes on the plastic parts.

Take one of the wood screw (you can take a bigger one to make it easier for your on this step). Point on each mark and give it a small hammer hit in order to create a starting point for the small wooden screws.




Then take a screw diver and start to insert the screws inside the marked spots. This will help you later on when fixing the different plastic parts, and should make it easier for you.




Once done, place back each elements on the plate.

We advise you to insert only 3 screws by side in order to make it easier later when you will insert the smooth rods.

Here is an example of the left side of the plate with only 3 screws


Then start by pushing the 435mm smooth rod along the left side of the bearings.





If you aligned everything properly, the smooth rod should get through the 2 linear bearings easily.

In certain cases, the smooth rod is slightly tilted because the bearing support is not properly aligned.Here having only 3 screws will allow you to adjust easily



Once the smooth rod has passed through the bearing and they are all aligned, you can insert the last 4th wood screw.




Do the same on the right side





You should have something like this picture





Make sure you insert the last screw.





Now place the middle plastic part and insert the 2 wooden screws.






Positioning of the build platform on the chassis:


List of parts:

  • 4 plate supports (1 with an embeeded end stop)
  • 8 M6X12mm screws
  • 8 T-Nuts
  • 1 previously mounted chassis
  • 4 cable ties
  • [provided] 1 Allen key
  • [not provided] 1 ruler

Now take the plates supports





Prepare them with 2 sets of M6 Screw/T-Nuts





Do it for all 4 parts





On each corner measure from the side of the chassis


Scalar XL: 72,5mm

Scalar M:  40mm



Do that on the 4 base corners of the printer:





Here is the back right corner





Here is the back left corner.

Special Note:

In this corner you will place the smooth rod holder with the embedded end stop .


The image shows the end result. The end stop should be in front of the LM8UU linear bearing support with the adjustment screw holder.






Place the supports inside the slots so that the top cable tie slots are always facing inside the chassis.

The border of the supports is to be positioned on each mark with the body of the plastic parts most on the inside of the printer




Now screw only 2 supports out of 4.The easier way is to screw either the right side or the left sides of the chassis and keep the other side unscrewed.




here is what it should look like





This 3D view is more up to date, and shows you where the smooth rods holder are located and also where the holder with the end stop is placed.






Now place the wooden plate smooth rods on the supports. What might happen is that one side will be slightly outside of it’s support.

The picture shows you an example



Here is a zoom showing that the smooth rod is not properly aligned with the support





In this case you just need to slide the support so that the smooth rod fit into the slot (here we shifted it left).




Then adjust the position of the smooth rod inside the slots.The smooth rods are a little bit shorter so you will need to center them in the middle of their support.

here an example of a smooth rods that needs to be centered:



Here the smooth rods has been centered.

The main goal is to keep the smooth rods in place using cable ties.




Once properly placed you should have something like this:





Slide the plate to both ends to check that everything is smooth.




Once the place is sliding fluently, you can tighten the smooth rods with the cable ties

Make sure to place the head of the cable ties on the side to allow a free movement of the plate.


Assemblage du plateau chauffant

Liste des pièces :

  • 1 plateau chauffant silicone
  • 1 plaque d’aluminium
  • 1 feuille d’isolation
  • 1 thermistor câblé
  • 1 stylo
  • 1 paire de ciseaux
  • 1 carte rigide au format carte de crédit
  •  rouleau de polyamide 50mm


Positionner l’élément chauffant en silicone (orange) au milieu du plateau en aluminium.

Faites un repère sur le plateau aluminium afin de le coller au centre de ce dernier.




Retournez l’élément chauffant afin de retirer le film de protection collant au dos de ce dernier.




Maintenant décoller délicatement la bande de protection 3M de l’élément chauffant.

Collez ensuite ce dernier au centre du plateau en aluminium.




Prenez maintenant le rouleau de polyamide et coupez une bande la longueur équivalente à la largeur de l’élément chauffant.

Avec une carte dure comme une carte de crédit ou une carte de fidélité, collez la bande de polyamide au niveau de l’extrémité de l’élément chauffant à l’opposé du connecteur.




Ceci à pour but de sécuriser l’élément chauffant sur le plateau en aluminium en plus de l’adhésif 3M que vous venez de coller.





Le résultat devrait ressembler à la photo.






Positionner le thermistor comme sur la photo de manière à positionner son extrémité au milieu de l’élément chauffant en faisant passer son câble le plus près possible du câble de l’élément chauffant.



Sécurisez le thermistor avec du polyamide afin que ce dernier reste coller au centre de l’élément chauffant




Avec un collier de serrage, rassembler les deux câbles qui sortent du plateau et fixez les ensemble . Faites en sorte que le câble du thermistor soit toujours à plat.

Positionner le collier de serrage en dehors de la zone du plateau en aluminium.




Avec du polyamide vous pouvez sécuriser le reste de l’élément chauffant (à gauche du la photo).





Positionner à présent l’isolant par dessus l’élément chauffant. L’isolant doit avoir la partie ressemblant à un feuillard d’aluminium contre l’élément chauffant afin de renvoyer le rayonnement thermique vers le plateau en aluminium.





A présent prenez un stylo/marqueur, et repérez la position du thermistor sous l’isolant.

Une fois repéré vous devrez couper la partie de l’isolant qui se situe sous le thermistor.

L’isolant, en plus de faire office d’isolant thermique, permet de compenser la sur épaisseur des câbles qui dépassent de l’élément chauffant et peuvent faire bomber le plateau en aluminium par la suite.


Retournez tout le bloc que vous venez de préparer.

En regardant la machine par l’arrière, faites en sorte de positionner le câble du plateau chauffant sur la droite.

Vous pouvez fixer tout le bloque avec 4 clips papier comme sur la photo.




En principe le câblage sortant sur le côté du plateau devrait ressembler à la photo et l’écartement entre le câble et le plateau devrait être le minimum possible.





En positionnant le câble du plateau, faites en sorte de la passer en dessous du plateau comme sur la photo.






Sous le plateau, insérez le clips pour câble (ici la pièce bleu)  et prenez soins de regrouper le câble de l’élément chauffant et celui du thermistor.





Maintenant fixer le serre câble sur le dessous du plateau.

Le but de cette pièce est d’être sur que le câble repose bien au dessus d’un des deux supports de roulement (ici en gris) afin d’éviter tout frottement et détérioration de la gaine orange lorsque le plateau se déplace.

Notez la position du tendeur de courroie,  Le serre câble se positionne donc au niveau du roulement le plus à l’opposé du tendeur de courroie. La vue proposée est donc celle de l’arrière de la machine

Dans cette position faites monter et descendre le plateau au maximum et vérifier que le câble orange reste bien à l’écart de la courroie du plateau



Raccordement du plateau au relais statique

Liste des pièces :

  • 4 pinces à papier
  • 1 relais static AC
  • 2 écrous marteau compatible M4
  • 2 vis M4x12
  • (non fournie) 1 tourne vis
  • (fournie) 1 clé allen
  •  clip en plastique


En regardant le châssis par derrière, faites passer le câble de l’élément chauffant sur la droite en exposant les cosses sur le côté du châssis.





Fixez le relais static en positionnant les deux borniers ayant le marquage en forme de vague le plus à l’extérieur du châssis. Placez les borniers avec les marquages « + » et « – » du côté du profilé verticale.




Dévissez les borniers correspondants au marquage en forme de vague et connectez y les cosses disponibles au niveau du câble du plateau chauffant.

Peu importe quel cosse (rouge ou bleu dans ce cas) vous prenez cela fonctionnera dans les deux cas.

Attention: Faites bien attention de connecter ces cosses (rouge ou bleu) sur les borniers avec le marquage en forme de vague noté 24 ~380VAC



Connectez la deuxième cosses au dernier bornier compatible.






Prenez la pièce plastique servant à sécuriser les borniers.

Cette pièce devrait avoir le marquage « SSRC »






Une partie du cache possède une petite chambre dont le but est d’isoler les borniers du relais statique connectés au 220V.

Le câble orange doit se positionner comme sur la photo.