Archives de catégorie : Scalar M

image_pdfimage_print

Electronic Wiring – Scalar M – XL

Electronic Wiring on Ramps 1.4 board

5V or12V probe? Careful choose your schematic

  • 12V probe has 1 Dupont 2 pins connector and 1 red wire left over
    • Red wire left over: +12V
    • Black wire: 0V- Ground
    • Red wire in connector: Signal.

 

 

 

 

Here is the wiring diagram to use


  • 5V probe has only 1 Dupont connector with 3 pins.
    • Brown wire (+5V)
    • Blue wire (0V – GND)
    • Black wire (Signal)

 

  • 5V probe can be provided with and extender with different colors
    • Red wire (+5V)
    • Black wire (0V – GND)
    • White wire (Signal)

The wiring on the electronic board is similar to the previous version of this probe.

  • The Red wire corresponds to the Brown wire
  • The Black wire corresponds to the Blue Wire
  • The White wire corresponds to the Black wire

Here is the wiring diagram to use


 

 

Schematic for 12V proximity sensor

Electronic wiring on Ramps 1.4

On this 2nd schematic, ou will find a schematic closer to what is provided within the kit. With the induction probe, the hot end fan ad the auxiliary blower fan.

On the induction probe, it is provided with 3 wires. 2 (red and black) are connected to a Dupont 2 pin connector, and 1 (red) left alone with a node here, is the power supply of the probe.

Schematic for 5V proximity sensor

Brachement électronique de la carte Ramps 1.4 avec sonde à inductance 5V

This schematic corresponds to the kits provided after 17th October 2016.

This kit is provided with a 5V proximity sensors. The blue wire is the ground wire. The black wire is the signal wire and the brown wire is the +5V powe wire.

If your probe is not provided with a 3pin black connector, please look at the other schematics.

A Y shape wire extender is also provided. It’s directly connected to the 12V power output of the Ramps board and will help you to connect the hot end fan power supply to the +12V. It will also be used to connect the 80mm 12V fan dedicated to cool down your electronics.

 

You should be able to recognize the other components now. The wire’s color on the stepper motors are only for information, the one provided might have a completely different set of colors. The one on the power terminals are real colors with the red wire corresponding to +12V and the black wire to the ground wire (0V)

 


Ramps 1.4 Schematic

Ramps 1.4 Schematic

For information purpose here is the official schematic of the Ramps 1.4 board. It is the same you will find on the official reprap wiki .

This schematic give you more data on all the pin out and also on the optional headers.

 

 

A word about the Big green power terminal

Ramps 1.4 power terminalsYou need to understand that the Green power connector on the left of the schematic picture is a Plug connector,

Meaning that the big part with the terminals can be removed from it’s base.

The picture here shows the 2 different parts:

  • On the left the terminal part that can be removed/unplugged
  • On the middle the fixed part, soldered on the ramps board
  • On the right side, the 2 parts attached together.

 


 

As visual support here is a picture of the electronic board free from any cables.

If you want compare directly with the previous schematic, you will need to make a 180° rotation as the power terminals are on the right on this picture and on the left on the previous schematic

 

 


For the standalone end stop holder (you might not have it, it has been replaced by the one below.)

Let’s start with the cables located on the Y axis, under the heat bed.

Also take 2 « long » U shaped clips and 1 cable tie.

 

For Integrated end stop, it’s very easy, the picture shows you how the wires are placed.

 

 

 

 

 


Pass all the wire inside the chassis.

You should have 2 wires of the end stop and 4 for the stepper motor.

Bring them all together and secure them inside the aluminum profile slot located just behind the stepper motor support

 


View from inside of the machine, the wires can easily fit inside the aluminum profile slot .

With 2 long plastic clips, secure the wires. Using short clips is not advised because they will raise the chassis of a few millimeters on this side only breaking the overall equilibrium. Use the « long » clips to keep the main part of the clip oriented toward the top of the machine.

 


(Scalar XL) In the corner of the chassis is located the SSR static relay. Attach the wires with a cable tie with the wires from the heat bed.

This will secure the wires on the same location.

 

 

 


 

(Scalar XL) Tighten the cable tie.

 

 

 

 

 


Take the end stop connector.

 

 

 

 


At any steps, feel free to go back to the official schematic if you have any doubt about the picture or if it’s not clear.

Place the Y axis end stop connector on it’s place, please read the following to the end before doing anything .

On the picture, the whole set of pins located on the lower left side is dedicated to end stops.

There are 3 rows pins from top to bottom.

The first row is linked to the +5V power (provided from the arduino itself).

The second row is linked to the Ground (+0V)

The last row is linked directly to the arduino.

Attention: Never connect the top row with the middle row because you will short circuit the +5V generated by the arduino when the end stop will close causing. If for some reason you happen to do this you will cause some irreversible damages to the arduino power supply and the electronics might not work anymore afterward.

Important: All the end stop MUST be connected on the bottom and middle row.

To complete the explanation, you can connect up to 6 end stop on a 3d printer. for each axis you can have 2 end stops, one for MIN and the other one for MAX position.

The firmware allows to use only MIN end stops and will handle by software the one for MAX position.

So you can reduce the amount of end stops to 3 end stops.

Each columns dedicated to 1 specific end stop.

Each axis is grouped by 2 columns side by side.

Starting from the right of the picture you will get the following :

  1. X MIN
  2. X MAX
  3. Y MIN
  4. Y MAX
  5. Z MIN
  6. Z MAX

You will connect the Y axis MIN end stop at the bottom of the 3rd column from the right..


Now let’s connect the heat bed thermistor connector located under the heat bed.

Locate it’s connector, you will now connect it to the electronic board.

 

 

 


The thermistor dedicated input pins are located just above the one dedicated for end stops.

You will find 6 pins on the same row, with T0, T1, T2 marking just below.

  1. T0 is for the hot end thermistor.
  2. T1 is for the heat bed thermistor
  3. T2 is an optional thermistor for a possible 2nd hot end.

So, connect the heat bed thermistor on the 3rd and 4th pin from the right, which should correspond to T1


Now take the Y axis stepper motor connector .

 

 

 

 

 

 

 


The dedicated pins for stepper motors are located below each stepper motor drivers, the small components with the heat sink.

You will find the markings indicating what stepper motor the driver is dedicated to.

On the top row, you have 3 motor drivers side by side. From right to left you have the dedicated axis:

  1. Axe X (marked X)
  2. Axe Y (marked Y)
  3. Axe Z (marked Z)

On the 2nd row you have here on the picture only 1 stepper driver and a free space for a 5th stepper driver.

Those are dedicated to Extruders, the part of the printer that pushes the plastic to the hot end.

From right to left:

  1. Extrudeur 0 (marked E0)
  2. Extrudeur 1 (marked E1)

Now connect the Y axis motor cable on the middle connector of the first row.

Very important: The stepper drivers don’t support to be powered on without any motor attached to them. doing this will definitely damage the component.

Please make sure to have at least 1 stepper motor connected to each stepper drivers mounted on the electronic board!

If you are using only 4 axis (X, Y , Z, and E0) and you happen to have 5 stepper drivers, mount only 4 of them and keep the 5th one in it’s packaging. It can be of some use as spare part if one of the drivers is failing or damaged.


Now let’s look at X axis stepper motor connector

 

 

 

 


This one is to be connected on the right of the Y Axis motor on the first row.

 

 

 

 


Now take the X axis end stop

 

 

 

 

 


It has to be connected at the bottom of the first Column starting from the right of the end stop dedicated header pins.

 

 

 


Still on the same machine’s side, you should have the Z axis motor connector left.

 

 

 

 

 


The Z axis has 2 dedicated pin header’s rows located under the dedicated Z axis stepper motor driver.

You may want to know that 1 single stepper driver can drive 2 stepper motor at once.

Connect this motor on one of the 2 rows.

 


(Scalar XL) Still on the same side of the machine, you can connect the static relay to the electronic board.

Start by taking a black cable provided with the static relay.

 

 

 


(Scalar XL) Screw it on the terminal connector with the «  » marking and the number « 4 »

(Scalar M) You won’t have any static relay on Scalar M, so take the 2 power wires coming from the heat bed.

 

 

 


(Scalar XL) The other side of the cable is to be connected on the set of power terminals (here blue) with « D8 » marking.

Each terminal connector of this column is identified by a small marking « + » that identifies the +12V output.

As the wire you have was connected on the « – » of the static relay, locate the terminal connector with « D8 » marking and connect the wire on the connector below the « + » marking. It should be the 2nd connector starting from the top.

(Scalar M) Take any one the 2 silicon heater power wire and plug it to the same terminal (the silicone heater has no polarity, so there is no ‘+’ and no « -« )

 


On the static relay side, connect now the 2nd wire (it should be red).

 

 

 


Screw it on the last remaining terminal with the « + » marking and identified by the number « 3« .

 

 

 

 


(Scalar XL) Connect the other side of the wire on the power terminal blocks, on the very first connector starting from the top, just above the previous wire you connected.

(Scalar M) take the left over heat bed power wire and plug it at in this same terminal.

 


Scalar XL:

On the XL heat bed, as it’s 220V the heat bed is provided with a Ground wire. It’s the one with Yellow and green color.

 

The purpose of this wire is to link the metallic chassis of your printer to the ground.

Indeed, if the 220V power wire gets broken for any reason and touches the chassis, your electric panel should crack up.

In order to have a proper connection, you need to connect it to any M6 screw on your chassis.

Here is an example on where you can place it! We choose a Metalic Square as it seems they provide the best location for this purpose.

 

 

 

 

 

 

 


The picture here is giving you some more information with a set of stickers on the wires. It should help you to figure out better where each wire is located

 

 

 

 

 

 


(Scalar XL) Start by separate the wires coming from the static relay and the other remaining ones..

 

 

 

 


Place the wires on the slot of the vertical aluminum profile.

You can use 2 « long » clips to help you maintain the wires inside the slots as shown on the picture.

 

 


Also add the wires coming from Y axis motor as well as it’s end stop inside the same slot on top of the wires attached to the static relay.

You might have to remove and replace the clips previously attached on the aluminum profile.

 


Now you can also insert the Z axis motor wire and help you with the already in place clips.

 

 

 


You should have 2 set of wires left coming from the X axis.

Keep in mind that those wires will have to follow the up down movement of the X axis.

 

 

 


Take them in your hand.

 

 

 

 

 

 


Take the 2 sets of wires, 1 with 4 wires and the other one with 2 wires. As they will move at the same time, it’s interesting to keep them together and check that there are enough length for them to go up and down the Z axis.

 

 

 


The best is to have the X axis carriage at the lowest or highest position possible so that you can quickly estimate the amount of wire length needed.

Here our carriage is located at the bottom and we roughly evaluate the length of wire we need for it to move up. mark or keep this length (here with our hand on top)

 

 


You can secure them by inserting them inside the vertical profile slot by letting them exit either toward the top or the opposite.

Secure them with a clips at the level marked by your hand earlier corresponding to the length needed to move all along the Z axis.

 

 


You can secure the wires with cable ties.

 

 

 

 

 


Now continue on with the set of wires coming from the hot end.

Place them on the middle of the top horizontal aluminum profile.

 

 

 


To make sure you have left enough free cable to allow the hot end to move freely, place the X carriage at one of it’s right or left limits. Here on the lower right corner.

Make sure to have enough free wire for the hot end to move up and down and also in each corners.

 

 


Take 3 clips, 2 long and 1 short.

They will help you to keep all the wires in place in the aluminum profile slots.

 

 

 


Start by securing your wires by placing them inside the top slot of the aluminum profile and use a long clip to keep them in place.

 

 

 

 


With the second long clip, keep in place the wires up to the electronic display.

You can let free the wires on the side. We will handle them later on.

 

 


Take the wires coming from the power supply.

We advise you to twirl the 4 cables together as it allows to easily keep them in place inside the aluminum slots. It also prevent from making any unwanted nodes with other cables later on.

 

 


Locate and take the connector from the other Z axis stepper motor that we previously placed inside the vertical aluminum profile. It should exit right next to the power supply if we refer to the previous wiring we did on this part.

 

 

 


Pass it inside the top horizontal aluminum profile and secure it with the last clip you should have.

You can use the already in place clips to secure the remaining of the wire up to the end.

 

 

 


Connect this connector on the pin header dedicated for the Z axis motor, It should be the last one remaining for the Z axis. Here at the top left of the picture.

 

 

 

 


Take the last stepper connector connected to the extruder motor.

This one must go behind the power supply and follow the sale slot used for the previous Z axis connector.

 

 


This should look like on the picture.

 

 

 

 

 


Connect it on the last pin header dedicated to stepper motors, below the stepper driver marked with « E0 ».

Here on the second row of stepper drivers on the right.

 

 


The cable will go through the same slot as the one used for the last Z axis motor wire.

 

 

 

 


Now, should remain the power supply power cables to be placed on top of the other stepper motor wires.

The clips should be able to keep all the cables into place.

 

 

 


Connect your wires on the general green power input connectors.

The whole set has polarity so make sure you connect the + output from the power supply to the + input of the board and the same goes for the Ground (minus) output of the power supply to the minus input of the board « + »-> »+ » and « – » -> « -« .

On this picture the blue cables are the « +12V » output of the power supply (yours should be red) and the brown wires are the Ground output of the power supply (yours should be black).

 

 


On the green power terminals a clear marking tells you the polarity of each terminal.

In order to emphasize the polarity of each terminal we added some sticker on the photo .

The ground cables (here in brown, yours in black) are to be connected to the « – » terminals.

The +12v power cables (here in blue, yours in red) should be connected on the other terminals marked with « + » sign.

 

 


Once all of them are connected it should look like the picture.

 

 

 

 

 

 

 


Now take the wires from the hot end fan.

 

 

 

 


Connect them on the output power terminal (here in blue) on the terminals marked with « D9 » which should be the middle terminals.

The red wire corresponding to the +12V should be connected to the terminal with « + » marking (here the 3rd on starting from the top).

Connect the remaining black wire corresponding to the « – » (ground) just below.

 


On the recent kits this fan might already be provided with a 2 pin connector

If your ramps board is provided with a « Y » shape wire extender then use it to connect the fan connector to the +12V of your ramps board.

Take the wires from the hot end.

The fan in front should be On all the time, so it will be connected to the +12V input of the board.

 

 


If you have the « Y » shaped wire extender, conserder using it . Use the following step only as an alternative solution to connect the hot end fan to the 12V Power supply.

The red wire (+12V) is to be connected on the same terminal power inputs marked with « + » along side the wires coming from the power supply.

Here we are using the 2nd green terminal starting from the top.

The black wire for the ground is to be connected to the terminal above with the « – » marking

 


Regarding the thermistor wire coming from the hot end, it is to be connector on the 2 dedicated pins marked « T0 » at the right of the thermistor dedicated to the heat bed.

Here the screw diver shows where it’s located.

 

 

 

 


Take the wires of the hot end heater cartridge.

They can be any color (often red or blue depending on the power of the heater cartridge).

 

 

 

 


The are to be connected on the last power output terminals (here in blue at the very bottom.

The heater cartridge is mainly a resistive element so it has no polarity at all and wires have no + or -, so you can connect them as you want on the last terminals at the bottom.

 


Now on the inductance probe wire, take the free red wire.

 

 

 

 


This stand alone wire is to be connected on the « + » marking of the green power input terminals. Take the one you want, here for a better repartitions, we propose to connect it to the green terminal at the very bottom.

 

 

 


The 3 pin connector with only 2 out of 3 pins are connected is dedicated to the Z min end stop.

Note: On certain kits the induction prob is provided with a 2 pin dupont connector (black) with 1 red and 1 black wire.

Warning, This connector has a polarity!

The 2 wires must always be connected on the last 2 rows of pin header with the void unconnected pin left alone for the 1 row.

On the version with 2 pin dupont connector, it must also be connector on the 2 last rows.

The green or red wire corresponds to the probe signal, so it must be connected to the signal dedicated line that is the last row.

The black wire is the ground of the probe. It must be connected to the middle row.

Extruder Calibration

Why do we need to calibrate our extruder?

It allows you to make sure that the proper amouint of filament is provided to your hotend.

Why do we need to calibrate the extruder on each machine?

The quantity of plastic pushed by the extruder depends mainly on the diameter of the extrusion gear.

Why calibrate the extruder?

It will increase the procission and quality of your prints because the proper amount of plastic will be provided to the hot end..

Why do you need to do this calibration on each machine?

The quantity of plastic pushed inside the hotend depends mainly on the drive gear diameter of the extruder.

This gear is machined with a different tolerance. So the gear diameter will vary from one model to another one and from one brand to another one..

How to proceed?

We adjust the amounts of steps / mm required to push the filament 1mm.

The overall procesdure is as follow:

  1. We extrude a certain length of filament, let’s take 200mm.
  2. We measure with a graduated ruller how much filament has been pushed.
  3. We then use a cross product to adjust the value of our machine.
  4. Then we check that the new value is good by extruding again 200mm and we measure again.
  5. We adjust when needed and we reapeat step 4 ntill we find the proper value.
  6. Finally to ensure the measurment error is very small we extrude 400mm or 600mm  of material (something you can measure with your ruller) , We then slightly adjust the EStep/mm to get our final setting.
  7. At this stage your extruder should be properly calibrated and the quality of your prints should greatly increase.

Step by Step :

  • If you are in Bowden mode, remove the PTFE tue at the exit of the extruder. (You need to push the small cap at the base of the tube and then pull the tube at the same time)
    Then push the filament so that the tip is at the same level as the extruder shell.
  • If you are in Direct drive, you will need to unmount the extruder from it’s support, so that you can measure at the very edge of the extruder exit.
  • Cleanly cut the filament to that it’s easier to measure.

  • The Provided SD card contains a set of Gcode that will help you in this process. You can find them here:

 

  • You will find severall files (ExtrudeXXXmm.gcode and RetractXXXmm.gcode)

  • Depending the firmware version, you will need to pre heat your hot end before extruding.
  • With your LCD browse inside the SD card into the folder  and print « Extrude200mm.gcode » .

  • Measure how many mm of filament is extruded. (IMake sure to use a fine Ruller to avoid measurements issues)

  • In order to make sure to avoid any slippery that may affect your next measurements (and probably make your measurements weird), It is strongly advised to perform these steps several times by resetting the filament position and extruding again 200mm.
  • If your measurements are consistent you can proceed to the folowing steps.

Slippery case:

  • In the opposite scenario, you will need to investigate where the slippery comes from.
  • Here are some hints :
    • The extruder spring is not tight enought.
    • The filament spool is forcing on the filament, preventing the extruder to pull it properly ( Look for any nodes on the filament, the spool itselft must be free)
    • The extruder compression finger might be broken, and the bearing is improperly applying pressure on the filament.
    • your Extrusion gear is improperly screwed, the motor is turning but your extrusion gear is slipping.
    • The extrusion gear might be full of plastic or dirty
    • Something is tempering with your filament
  • If you solved this issue you will need to check again by doing again the previous steps.

 


 

Computation of the proper Epas/mm value
Use of « cross product »

  • Once you have checked that your extruder is slippery free you will be able to compute the new ESteps/mm by using the following formula:

 (Actual EStep / mm ) * (Expected extruded filament length) / (Length of measured extruded filament) = new EStep/mm

Example detailed below : 150 * 200 / 198 = 151.5 ESteps/mm

In order to obtain the ESteps/mm of your extruder you will need to navigate inside your LCD display  » Controle>Mouvements>EStep/mm » (last parameter of the list)

Example explaination :

if you have extruded 200mm of filament

  • Expected extruded filament length = 200mm

If you measured 198mm

  • Length of measured extruded filament = 198mm

if your Estep/mm is 150 step/mm ( » Control>Mouvements>EStep/mm« )

  • Actual EStep / mm = 150 pas/mm

you get:

New EStep/mm = 150 * 200 / 198 = 151.5 (Please take good care of the decimale)


 

Applying our new EStep/mm

  • Now that you calculated the new EStep/mm for your extruder you need to apply this parameter to you machine using the LCD display:  « Control>Mouvements>EStep/mm« 
  • Do again the test to extrude 200mm of filament. The extruded filament length should be better .If you still have some error it’s often due to the precission of the initial measurement. (90% of the time)
  • Once you get something close to 200mm , then extrude again 200mm, you should be able to measure 400mm. This steps allows you to reduce the measurement error based on 200mm.
  • At this stage you can apply your final fined tuned EStep/mm..
  • You can also use « Retract200mm.gcode » to double check that your filament properly comes back to it’s position of orgine.


 

Congratulation, Make sure to save your settings !

You have now completed the calibration process of your extruder.

Make sure that your new setting is properly saved inside your printer EEPROM:

  • « Control> Save config« 
  • Wait a few seconds and switch down the printer. Switch it back on and check that the setting has properly been saved (« Control>Mouvements>EPas/mm« )

 

Resources :

For those that lost the content of the original SD card provided with the Scalar M or Scalar XL you can download the calibration Gcode here by clicking in the Zip icon or the link below:

Calibration_Gcodes.Zip

 

12V 220W Heatbed wiring

This page is explains how to wire your 12V 220W heatbed using static relay


What is a static relay?

A static relay is an electronic relay able to switch Power.

You can find different types for different voltages and different powers.

In our case 12V 220W heatbed , you will need to use a  DC-DC static relay, driven by 12V input voltage, and able to drive DC output power voltage.

This type of relay has MOSFET power transistor able to drive DC output voltage.

If you are using a 220V heatbed directly powered by your grid you will need to use a DC-AC static relay.

These have power triacs able to drive 220V alternative output voltages.

How to choose the power of your static relay?

The power your can draw out of a static relay depends on many factor. It’s type, it’s rated power, it’s ability to dissipate heat.

DC-DC Relays

For DC-DC relays , They ofent get hot very easily, so take into account to always select one with   2 or 3 times it’s nominal load.

With a 220W 12V heatbed, the max current is around 18.3A.

  • A 25A relay will be too small  (max usable load would be 12A => 144W Max)
  • A 40A relay will be just enough  (2 times the nominal load) and might get hot
  • A 60A relay ( able to support 3 times the nominal load) will be well adapted and should dissipate very little heat.

DC-AC relays

These have power tyristors or triacs.

For the 3D printer power range a simple 25A relay is enough for most usage.

If we take the Scalar XL with it’s 700W 220V heatbed,

Power(W) = Input Voltage(V) x Curent (A) x Cos Phy

Current= Power/ (Input Voltage x cos Phy)

If we take CosPhy = 0.6

Curent = 700W/(220V*0.6) => 5.8A MAX

This relay is 4.3 time more powerfull than it’s load.

Why a static relay?

With these powers, a static relay will protect you electronics from being damaged, and will also increase it’s lifepan.

If you are using Ramps boards with it’s Green power connectors, they can support only 11A.

Using more current is possible but you will need a very good cooling of the power components and of the power connector itself.

However with time you might kill the power connector, or even the Power transistor of the Ramps board.

 

 

 

 


 

Hopefully these can be easily replaced.

.

 

 

 

 

 

 

 


 

However, using a Static relay will prevent such issues.

 

 

 

 

 

 

 

 


Heatbed Wiring using the Static relay.

Directly from your power supply

If you have enough outputs on your power supply, you can connect directly the heatbed to the power supply following this schematic..

The +12V output de l’alimentation est relié directement au lit chauffant.

The heatbed output is then connectod to the « + » (pin 2) of the static relay

The  « – » (pin 1)  output is connected to the 0V of your power supply.

Pins 3 and 4 of the static relay are connected to D8 output of your Ramps board

Pay close attention to the polarity!

Between the Ramps and your static relay, you can use thin wires (24AWG for example) because very little power is transmitted to the static relay.

However, on your static relay output, make sure you are using proper wire diameter.  (use 2.5mm² wires). The bigger the diameter, the lower the power loss, and your wiresd will stay cold.

Also attache the static relay on the aluminum extrusions.

For Scalar 3d Printers, you can attach it directly on the extrusion profiles. it will be greatly spread static relay heat.

 


With terminal strips

The assembly is very similar.

We will use terminal strip to connect with the available wires.

see above comments for more details.

 

Before Starting – Tools

Here is the list of the tools that you will require in order to assemble your 3D printer:

Tools provided inside the kit:

  1. 1Allen key set: Will help you to stighten the chassis screws, the Mk8 direct drive gear and the pulleys.
  2. 1 ceramique screw driver: Will be required when you are calibrating the current of the stepper motor drivers.
  3. Polyamide Tape: Will be required to prepare and protect your aluminum heatbed before printing.
  4. 1 Pen Sharpener: Will help you to sharpen the tip of the plastic filament in order to make it easier to push the filament up into the hot end input.
  5. 1 SD-Card: Already pre loaded with a lot of resources (Stl models of the plastic parts, softwares, firmwares, printing profiles, goodies…),You can also use it to print using the SD-Card reader located on the side of your 3D printer.

Tools not provided into the kit:

  1. 1 philips screw driver: Will help you with certain screws, such as heatbed wood screws, and screws used to fix 2 plastic parts together.
  2. 1 bubble level: Will help you to align the smooth rods with the chassis.
  3. 1 meter/40cm ruller: Will help you to place the different elements at the proper location on the chassis.
  4. 1 cutting pliers : Will help you to cut the colson collars, wires and so on.
  5. 1 scalpel with some blades: Usefull to clean up some plastic parts if needed.
  6. 1 wood file: To adjust/cleanup some plastic parts.

 

HotEnd Installation (AluHotEnd V7)

List of parts :

  • 1 assembled hot end (here AluHotEnd V7)
  • 1 inductor probe
  • 3 x M3x8 screws
  • 4 x M3x16 screws
  • 4 vis M3x20 screws
  • 1 x M4x20 screws
  • 1 Fan provided with the hot end(40 mm)
  • 1 couple of plastic parts to support the hot end
  • 1 blower fan
  • 1 blower fan support
  • 1 PTFE tube
  • (not providedi) screw driver

The bag provided should look like the one on the picture. It contains all the parts needed to achieve the assembly.

 

 

 

 


 

Once opened you should have the following parts

 

 

 

 

 


 

Take the hot end bloque assembled without the screws.

 

 

 

 

 


 

Open it.

You will have 3 separate parts:

  • 1 base support (here in the middle)
  • 1 inductive probe support (here on the left)
  • 1 wired hot end.

 

 


 

We are now going to prepare the base suppot to get it ready to be installed on the X axis carriage.

 

 

 

 


Take 2x M3x20 screws

 

 

 

 

 


 

Start to insert them inside the central holes.

Insert them untill they start to go out of the on the opposite side..

The assembly should look like the picture.

 


 

Behing it should look like this, with the screws at the border limit.

 

 

 

 


Now go on you X carriage.

The process is the same for both Scalar M and Scalar XL.

The hole colums allows you to adjust the height of the hot end later on if you need to.

But for now use the last to at the bottom of the carriage.

The pictures shows you which holes to take..

 

 

 


Place the base support in front of these holes.

Tighten the screws using very little strength so that you keep the whole assembly tight.

 

 

 


 

Now insert the hot end inside the dedicated groove as shown on the picture.

make sure that the wires are placed so that they go left.

 

 


 

Now take the inductor support.

Start to insert the 2 x M3x20 screws inside the dedicated holes. The picture tells you which one to use.

 

 

 


 

The screws should also slightly exit on the other side .

 

 

 

 

 


 

Place this support on top of the hot end and don’t touche the Screws yet!

Place the fan (here 40mm) on the right side of the assembly.

Use 4 M3x16mm screws and slightly screw them loose so that the fan keep it’s place.

 


The front view should look like this.

No screws are tighten yet.

The fan will hold properly the inductor holder.

If you tighten the inductor holder first, the fan hole might not be aligned anymore with it’s screws.

 


Once you have checked that all is aligned you can tighten the fan screws.

Note that the the screws of the inductor holder are yet not tighten.

 

 

 


 

Now you can finish to screw the inductor probe support.

The left screw should allow you to go a little bit further than the right one. It should make sure that the hot end is properly hold in place..

 

 


 

Now take the blower fan support as well as 2 M3x8mm screws (the shorter ones!)

This part allows to keep in place the blower fan in a vertical manner. It also guide the airflow toward the hotend’s nozzle tip.

 

 


 

Same here, start to insert the screws until they reach the other side of the plastic part.

The holes we are using here are the one at the 2nd row of holes starting from the bottom.

This design allows to adjust the height of the air flow based on the hot end you are using.

 

 

 

 

 

 

 


 

Here the screw driver shows you the holes to use to fix the blower fanholder.

They are the 2 holes located below the one used to secure the inductor support in place.

 

 

 

On this picture, the second hole to use.

 

 

 

 

 


 

Now place the blower fan holder so that the screws are aligned with their holes.

Here also make sure to go easy with the screws.

 

 

 


 

The side views of the assembly

 

 

 

 

 


 

The fan shroud should point to the nozzle tip.

 

 

 

 

 


Now take the blower fan

 

 

 

 

 


 

unroll the wires.

 

 

 

 

 


 

Place it on it’s support so that the fan output is placed toward the bottom.

At the top you will find 2 holes slightly shifted.

Place the fan so that the holding hole is aligned with 1 of the 2 holes on the support. Take the one you feel is best.

 


 

Use the last M4x20 screw (the bigger one) to keep the fan in place.

here we choose the top hole.

 

 

 


 

Once the blower fan in place, the setup should look like this picture.

 

 

 

 


 

The inductor probe comes last.

 

 

 

 

 

 


 

Remove the bottom nut and washer.

Take some time to place the remaining washer and nut slightly above the middle of the probe thread.

 

 

 


 

Insert the probe inside the last dedicated hole.

 

 

 

 

 


 

Try to place it so that the bottom blue end cap of it is slightly above the hot end tip. We will come back to it alter on when you will setup your electronics.

 

 

 


 

You can put back the washer and it’s nut to secure the probe in place.

 

 

 

 


Finish by placing the PTFE tube inside the pneumatic connector and you are done.

 

[Scalar M] chassis Assembly

List of parts

  • 8 x  square holders
  • 32 x M6x12mm screws
  • 32 x  M6 T-Nuts
  • 4 x 40cm extrusion profile
  • 1 x 50cm extrusion profile
  • 6 x side covers
  • [Provided] 1 Allen key

General tips when using 3030 aluminum extrusion

The printer kit chassis is based on Aluminum extrusion of various sizes, of some metallic square holders and a set of screws + T-Nuts.

 

 

 

 

 


Each square holder is coming with a set of 4 M6x12 screws and 4 T-Nuts .

Mounting square holders :
Off course you can do it many ways, but we will give you here the easier way we found, that allows you to quickly assemble your kit.

 

 

 


Take 2 M6 screws and place them on 2 side by side slots.
Then prepare the T-Nuts.

 

 

 

 


Start to screws the T-Nuts slightly .

 

 

 

 

 

 


The best is to place the T-Nuts so that they are parallel to each other.

 

 

 

 

 


Then approach then from the extrusion and slide them inside the extrusion slot.

 

 

 

 

 


Here is a side view, the nuts must be aligned with the extrusion slot so that they can perfectly fit inside.


Once aligned you should be able to properly fit the nuts inside the slot.

 

 

 

 


When screwing the M6 screws, the nut must perform a 90° angle turn and place lock the whole system as shown in the picture.

It can happen that 1 nut won’t turn properly because of various reasons. Be careful that it fully turns otherwise the lock performed buy the nut won’t be efficient.

So take a few seconds to make sure that each Nut has properly turned 90° inside the slot . When you unscrews the nut, it should perform another 90° angle counterclockwise and allow the whole system to be unmounted from the extrusion profile.


Base assembly (Video)

List of parts :

  • 4 x square holders
  • 16 x M6x12mm screws
  • 16 x M6 T-Nuts
  • 6 x 40cm extrusion profile
  • 1 x 50cm extrusion profile
  • [Provided] 1 Allen key

 

 


Place all the extrusion as shown on the picture.

. Now pre-assembled each of the 4 square holders with their set of screws + T-Nuts.

 

 

 


Here is a zoomed view of each corner of the assembly with pre-mounted square holders.


Screw each square holder on each corners


Here is the chassis base once every square holders are in place.

 

 

 

 

 


Side mounts assembly (video)

List of parts :

  • 2 square holders
  • 8 x M6x12mm screws
  • 8 x T-Nuts
  • 2 x 40cm extrusion profiles
  • [Provided] 1  Allen key

 

 


Measure 160cm taking into reference the end of 1 corner (On the video we measure 128mm from the inside of the base =>160-30mm = 130mm)

So 160mm is from outside of the base and 130mm (or 128mm) is from the inside.

16cm will give you the proper place where to position the side mounts.


Once in place screw them using a square holder.

 

 

 

 

 


Here are the side mounts once assembled.

 

 

 

 

 


Assembly of the top mount  (video)

List of parts

  • 2 x square holders
  • 8 x M6x12mm screws
  • 8 x T-Nuts
  • 1 x 50cm extrusion profile
  • [Provided] 1 Allen key

For this step, take the longer extrusion profile (50cm) that should be remaining and place it on top of the side mounts.Use a pair of square holders to fix it.
This should look like on the picture.


 

Finish (Video)

List of parts

  •  6 side covers

Take the 6 side covers that look like on the picture.

 

 

 

 

 


Place them in front of the far sides of the extrusion profiles. You might need to push a little bit in order to properly position them.

 

 

 

 


Push them entirely with some force. If you struggle too much use a hammer and slightly hit the flat side of the side covers, then they should get inside easily.

 

 

 

 


Final result