Archives de catégorie : Electronique

image_pdfimage_print

Electronic Wiring – Scalar M – XL

Electronic Wiring on Ramps 1.4 board

5V or12V probe? Careful choose your schematic

  • 12V probe has 1 Dupont 2 pins connector and 1 red wire left over
    • Red wire left over: +12V
    • Black wire: 0V- Ground
    • Red wire in connector: Signal.

 

 

 

 

Here is the wiring diagram to use


  • 5V probe has only 1 Dupont connector with 3 pins.
    • Brown wire (+5V)
    • Blue wire (0V – GND)
    • Black wire (Signal)

 

  • 5V probe can be provided with and extender with different colors
    • Red wire (+5V)
    • Black wire (0V – GND)
    • White wire (Signal)

The wiring on the electronic board is similar to the previous version of this probe.

  • The Red wire corresponds to the Brown wire
  • The Black wire corresponds to the Blue Wire
  • The White wire corresponds to the Black wire

Here is the wiring diagram to use


 

 

Schematic for 12V proximity sensor

Electronic wiring on Ramps 1.4

On this 2nd schematic, ou will find a schematic closer to what is provided within the kit. With the induction probe, the hot end fan ad the auxiliary blower fan.

On the induction probe, it is provided with 3 wires. 2 (red and black) are connected to a Dupont 2 pin connector, and 1 (red) left alone with a node here, is the power supply of the probe.

Schematic for 5V proximity sensor

Brachement électronique de la carte Ramps 1.4 avec sonde à inductance 5V

This schematic corresponds to the kits provided after 17th October 2016.

This kit is provided with a 5V proximity sensors. The blue wire is the ground wire. The black wire is the signal wire and the brown wire is the +5V powe wire.

If your probe is not provided with a 3pin black connector, please look at the other schematics.

A Y shape wire extender is also provided. It’s directly connected to the 12V power output of the Ramps board and will help you to connect the hot end fan power supply to the +12V. It will also be used to connect the 80mm 12V fan dedicated to cool down your electronics.

 

You should be able to recognize the other components now. The wire’s color on the stepper motors are only for information, the one provided might have a completely different set of colors. The one on the power terminals are real colors with the red wire corresponding to +12V and the black wire to the ground wire (0V)

 


Ramps 1.4 Schematic

Ramps 1.4 Schematic

For information purpose here is the official schematic of the Ramps 1.4 board. It is the same you will find on the official reprap wiki .

This schematic give you more data on all the pin out and also on the optional headers.

 

 

A word about the Big green power terminal

Ramps 1.4 power terminalsYou need to understand that the Green power connector on the left of the schematic picture is a Plug connector,

Meaning that the big part with the terminals can be removed from it’s base.

The picture here shows the 2 different parts:

  • On the left the terminal part that can be removed/unplugged
  • On the middle the fixed part, soldered on the ramps board
  • On the right side, the 2 parts attached together.

 


 

As visual support here is a picture of the electronic board free from any cables.

If you want compare directly with the previous schematic, you will need to make a 180° rotation as the power terminals are on the right on this picture and on the left on the previous schematic

 

 


For the standalone end stop holder (you might not have it, it has been replaced by the one below.)

Let’s start with the cables located on the Y axis, under the heat bed.

Also take 2 « long » U shaped clips and 1 cable tie.

 

For Integrated end stop, it’s very easy, the picture shows you how the wires are placed.

 

 

 

 

 


Pass all the wire inside the chassis.

You should have 2 wires of the end stop and 4 for the stepper motor.

Bring them all together and secure them inside the aluminum profile slot located just behind the stepper motor support

 


View from inside of the machine, the wires can easily fit inside the aluminum profile slot .

With 2 long plastic clips, secure the wires. Using short clips is not advised because they will raise the chassis of a few millimeters on this side only breaking the overall equilibrium. Use the « long » clips to keep the main part of the clip oriented toward the top of the machine.

 


(Scalar XL) In the corner of the chassis is located the SSR static relay. Attach the wires with a cable tie with the wires from the heat bed.

This will secure the wires on the same location.

 

 

 


 

(Scalar XL) Tighten the cable tie.

 

 

 

 

 


Take the end stop connector.

 

 

 

 


At any steps, feel free to go back to the official schematic if you have any doubt about the picture or if it’s not clear.

Place the Y axis end stop connector on it’s place, please read the following to the end before doing anything .

On the picture, the whole set of pins located on the lower left side is dedicated to end stops.

There are 3 rows pins from top to bottom.

The first row is linked to the +5V power (provided from the arduino itself).

The second row is linked to the Ground (+0V)

The last row is linked directly to the arduino.

Attention: Never connect the top row with the middle row because you will short circuit the +5V generated by the arduino when the end stop will close causing. If for some reason you happen to do this you will cause some irreversible damages to the arduino power supply and the electronics might not work anymore afterward.

Important: All the end stop MUST be connected on the bottom and middle row.

To complete the explanation, you can connect up to 6 end stop on a 3d printer. for each axis you can have 2 end stops, one for MIN and the other one for MAX position.

The firmware allows to use only MIN end stops and will handle by software the one for MAX position.

So you can reduce the amount of end stops to 3 end stops.

Each columns dedicated to 1 specific end stop.

Each axis is grouped by 2 columns side by side.

Starting from the right of the picture you will get the following :

  1. X MIN
  2. X MAX
  3. Y MIN
  4. Y MAX
  5. Z MIN
  6. Z MAX

You will connect the Y axis MIN end stop at the bottom of the 3rd column from the right..


Now let’s connect the heat bed thermistor connector located under the heat bed.

Locate it’s connector, you will now connect it to the electronic board.

 

 

 


The thermistor dedicated input pins are located just above the one dedicated for end stops.

You will find 6 pins on the same row, with T0, T1, T2 marking just below.

  1. T0 is for the hot end thermistor.
  2. T1 is for the heat bed thermistor
  3. T2 is an optional thermistor for a possible 2nd hot end.

So, connect the heat bed thermistor on the 3rd and 4th pin from the right, which should correspond to T1


Now take the Y axis stepper motor connector .

 

 

 

 

 

 

 


The dedicated pins for stepper motors are located below each stepper motor drivers, the small components with the heat sink.

You will find the markings indicating what stepper motor the driver is dedicated to.

On the top row, you have 3 motor drivers side by side. From right to left you have the dedicated axis:

  1. Axe X (marked X)
  2. Axe Y (marked Y)
  3. Axe Z (marked Z)

On the 2nd row you have here on the picture only 1 stepper driver and a free space for a 5th stepper driver.

Those are dedicated to Extruders, the part of the printer that pushes the plastic to the hot end.

From right to left:

  1. Extrudeur 0 (marked E0)
  2. Extrudeur 1 (marked E1)

Now connect the Y axis motor cable on the middle connector of the first row.

Very important: The stepper drivers don’t support to be powered on without any motor attached to them. doing this will definitely damage the component.

Please make sure to have at least 1 stepper motor connected to each stepper drivers mounted on the electronic board!

If you are using only 4 axis (X, Y , Z, and E0) and you happen to have 5 stepper drivers, mount only 4 of them and keep the 5th one in it’s packaging. It can be of some use as spare part if one of the drivers is failing or damaged.


Now let’s look at X axis stepper motor connector

 

 

 

 


This one is to be connected on the right of the Y Axis motor on the first row.

 

 

 

 


Now take the X axis end stop

 

 

 

 

 


It has to be connected at the bottom of the first Column starting from the right of the end stop dedicated header pins.

 

 

 


Still on the same machine’s side, you should have the Z axis motor connector left.

 

 

 

 

 


The Z axis has 2 dedicated pin header’s rows located under the dedicated Z axis stepper motor driver.

You may want to know that 1 single stepper driver can drive 2 stepper motor at once.

Connect this motor on one of the 2 rows.

 


(Scalar XL) Still on the same side of the machine, you can connect the static relay to the electronic board.

Start by taking a black cable provided with the static relay.

 

 

 


(Scalar XL) Screw it on the terminal connector with the «  » marking and the number « 4 »

(Scalar M) You won’t have any static relay on Scalar M, so take the 2 power wires coming from the heat bed.

 

 

 


(Scalar XL) The other side of the cable is to be connected on the set of power terminals (here blue) with « D8 » marking.

Each terminal connector of this column is identified by a small marking « + » that identifies the +12V output.

As the wire you have was connected on the « – » of the static relay, locate the terminal connector with « D8 » marking and connect the wire on the connector below the « + » marking. It should be the 2nd connector starting from the top.

(Scalar M) Take any one the 2 silicon heater power wire and plug it to the same terminal (the silicone heater has no polarity, so there is no ‘+’ and no « -« )

 


On the static relay side, connect now the 2nd wire (it should be red).

 

 

 


Screw it on the last remaining terminal with the « + » marking and identified by the number « 3« .

 

 

 

 


(Scalar XL) Connect the other side of the wire on the power terminal blocks, on the very first connector starting from the top, just above the previous wire you connected.

(Scalar M) take the left over heat bed power wire and plug it at in this same terminal.

 


Scalar XL:

On the XL heat bed, as it’s 220V the heat bed is provided with a Ground wire. It’s the one with Yellow and green color.

 

The purpose of this wire is to link the metallic chassis of your printer to the ground.

Indeed, if the 220V power wire gets broken for any reason and touches the chassis, your electric panel should crack up.

In order to have a proper connection, you need to connect it to any M6 screw on your chassis.

Here is an example on where you can place it! We choose a Metalic Square as it seems they provide the best location for this purpose.

 

 

 

 

 

 

 


The picture here is giving you some more information with a set of stickers on the wires. It should help you to figure out better where each wire is located

 

 

 

 

 

 


(Scalar XL) Start by separate the wires coming from the static relay and the other remaining ones..

 

 

 

 


Place the wires on the slot of the vertical aluminum profile.

You can use 2 « long » clips to help you maintain the wires inside the slots as shown on the picture.

 

 


Also add the wires coming from Y axis motor as well as it’s end stop inside the same slot on top of the wires attached to the static relay.

You might have to remove and replace the clips previously attached on the aluminum profile.

 


Now you can also insert the Z axis motor wire and help you with the already in place clips.

 

 

 


You should have 2 set of wires left coming from the X axis.

Keep in mind that those wires will have to follow the up down movement of the X axis.

 

 

 


Take them in your hand.

 

 

 

 

 

 


Take the 2 sets of wires, 1 with 4 wires and the other one with 2 wires. As they will move at the same time, it’s interesting to keep them together and check that there are enough length for them to go up and down the Z axis.

 

 

 


The best is to have the X axis carriage at the lowest or highest position possible so that you can quickly estimate the amount of wire length needed.

Here our carriage is located at the bottom and we roughly evaluate the length of wire we need for it to move up. mark or keep this length (here with our hand on top)

 

 


You can secure them by inserting them inside the vertical profile slot by letting them exit either toward the top or the opposite.

Secure them with a clips at the level marked by your hand earlier corresponding to the length needed to move all along the Z axis.

 

 


You can secure the wires with cable ties.

 

 

 

 

 


Now continue on with the set of wires coming from the hot end.

Place them on the middle of the top horizontal aluminum profile.

 

 

 


To make sure you have left enough free cable to allow the hot end to move freely, place the X carriage at one of it’s right or left limits. Here on the lower right corner.

Make sure to have enough free wire for the hot end to move up and down and also in each corners.

 

 


Take 3 clips, 2 long and 1 short.

They will help you to keep all the wires in place in the aluminum profile slots.

 

 

 


Start by securing your wires by placing them inside the top slot of the aluminum profile and use a long clip to keep them in place.

 

 

 

 


With the second long clip, keep in place the wires up to the electronic display.

You can let free the wires on the side. We will handle them later on.

 

 


Take the wires coming from the power supply.

We advise you to twirl the 4 cables together as it allows to easily keep them in place inside the aluminum slots. It also prevent from making any unwanted nodes with other cables later on.

 

 


Locate and take the connector from the other Z axis stepper motor that we previously placed inside the vertical aluminum profile. It should exit right next to the power supply if we refer to the previous wiring we did on this part.

 

 

 


Pass it inside the top horizontal aluminum profile and secure it with the last clip you should have.

You can use the already in place clips to secure the remaining of the wire up to the end.

 

 

 


Connect this connector on the pin header dedicated for the Z axis motor, It should be the last one remaining for the Z axis. Here at the top left of the picture.

 

 

 

 


Take the last stepper connector connected to the extruder motor.

This one must go behind the power supply and follow the sale slot used for the previous Z axis connector.

 

 


This should look like on the picture.

 

 

 

 

 


Connect it on the last pin header dedicated to stepper motors, below the stepper driver marked with « E0 ».

Here on the second row of stepper drivers on the right.

 

 


The cable will go through the same slot as the one used for the last Z axis motor wire.

 

 

 

 


Now, should remain the power supply power cables to be placed on top of the other stepper motor wires.

The clips should be able to keep all the cables into place.

 

 

 


Connect your wires on the general green power input connectors.

The whole set has polarity so make sure you connect the + output from the power supply to the + input of the board and the same goes for the Ground (minus) output of the power supply to the minus input of the board « + »-> »+ » and « – » -> « -« .

On this picture the blue cables are the « +12V » output of the power supply (yours should be red) and the brown wires are the Ground output of the power supply (yours should be black).

 

 


On the green power terminals a clear marking tells you the polarity of each terminal.

In order to emphasize the polarity of each terminal we added some sticker on the photo .

The ground cables (here in brown, yours in black) are to be connected to the « – » terminals.

The +12v power cables (here in blue, yours in red) should be connected on the other terminals marked with « + » sign.

 

 


Once all of them are connected it should look like the picture.

 

 

 

 

 

 

 


Now take the wires from the hot end fan.

 

 

 

 


Connect them on the output power terminal (here in blue) on the terminals marked with « D9 » which should be the middle terminals.

The red wire corresponding to the +12V should be connected to the terminal with « + » marking (here the 3rd on starting from the top).

Connect the remaining black wire corresponding to the « – » (ground) just below.

 


On the recent kits this fan might already be provided with a 2 pin connector

If your ramps board is provided with a « Y » shape wire extender then use it to connect the fan connector to the +12V of your ramps board.

Take the wires from the hot end.

The fan in front should be On all the time, so it will be connected to the +12V input of the board.

 

 


If you have the « Y » shaped wire extender, conserder using it . Use the following step only as an alternative solution to connect the hot end fan to the 12V Power supply.

The red wire (+12V) is to be connected on the same terminal power inputs marked with « + » along side the wires coming from the power supply.

Here we are using the 2nd green terminal starting from the top.

The black wire for the ground is to be connected to the terminal above with the « – » marking

 


Regarding the thermistor wire coming from the hot end, it is to be connector on the 2 dedicated pins marked « T0 » at the right of the thermistor dedicated to the heat bed.

Here the screw diver shows where it’s located.

 

 

 

 


Take the wires of the hot end heater cartridge.

They can be any color (often red or blue depending on the power of the heater cartridge).

 

 

 

 


The are to be connected on the last power output terminals (here in blue at the very bottom.

The heater cartridge is mainly a resistive element so it has no polarity at all and wires have no + or -, so you can connect them as you want on the last terminals at the bottom.

 


Now on the inductance probe wire, take the free red wire.

 

 

 

 


This stand alone wire is to be connected on the « + » marking of the green power input terminals. Take the one you want, here for a better repartitions, we propose to connect it to the green terminal at the very bottom.

 

 

 


The 3 pin connector with only 2 out of 3 pins are connected is dedicated to the Z min end stop.

Note: On certain kits the induction prob is provided with a 2 pin dupont connector (black) with 1 red and 1 black wire.

Warning, This connector has a polarity!

The 2 wires must always be connected on the last 2 rows of pin header with the void unconnected pin left alone for the 1 row.

On the version with 2 pin dupont connector, it must also be connector on the 2 last rows.

The green or red wire corresponds to the probe signal, so it must be connected to the signal dedicated line that is the last row.

The black wire is the ground of the probe. It must be connected to the middle row.

Re-Arm – 32Bits Upgrade for Scalar 3D printer

Re-Arm

Re-Arm board description

Re-Arm board, allows to boost the performances of your 3D printer

She has

  • An ARM LPC1768 32bits controller running at 100Mhz
  • 512KB Flash
  • Directly compatible with Ramps 1.4 board
  • Has 5V power outputs.
  • Supports RRD GLCD Graphical displays
  • Supports Ethernet modules
  • Supports stepper drivers able to run at 1/128 micro-steps (SD6128 for example)
  • Running with Smoothieware firmware (A Marlin port is currently in progress).

It’s an ideal candidate to boost/upgrade your 3D printers based on Arduino Mega 2560 + Ramps 1.4 shield.

Here is a zoom over the expansion pins

 

Board installation

The procedure is very simple. Just remove your Arduino Mega from the Ramps board and replace it with the Re-Arm board. It’s pin to pin compatible.

Overall wiring schematic

In the current configuration, Smoothieware firmware is only compatible with RRD GLCD graphic display.

+5V Wiring

Here is an important point to take into account when upgrading your system

  • Remove the potential jumper located just next to the green power supply connector

With and Arduino board, this jumper allows to provide +5V to the servo motors dedicated pins.

If you keep the jumper into place, Re-Arm board will only provide +3.3V to the servos, which is too low.

  • Use the 20cm Female-Female wire provided, in order to link the +5V output  of the Re-Arm (here on the left) , to the middle pin located on the bloc of 3 pins, between the reset button and the green power connector (here on the right)

Graphical display wiring

The left side shows how to wire the graphical display with the adaptor board.

  • Important! Take a lot of caution on the location of the connectors key visible on the picture . Some displays may have these soldered the wrong way!
  • Important! Here again you need to connect the +5V of the Re-Arm Board to the +5V input if the display.The +5V wire is the small stand alone wire. It needs to be connected as shown on the pictures

BLTouch Wiring

Here The wiring is identical to any previous wiring.

Runout sensor wiring

 

Firmware

Firmware installation

  • Download the file that seems more appropriate to your machine / setup
  • Unzip the .Zip file. You should find 2 files: Firmware.bin et config.txt
  • These 2 files have to be copied/paste on the Micro SD card. You then need to insert it inside your Re-Arm board.
  • Boot up the board.
    • When the firmware is updating, the board will take a few seconds in order to boot. If the Graphical display is connected, it will beep untill the firmware has been updated. Do not shut down the board while updating! (it takes about 10 seconds to complete)
    • Once the firmware is installed / updated, the display show show something on the screen.

Cura configruation

With Smoothieware firmware, the startup gcode will slightly change.

Start.gcode

Here is what you should have in your « Start.gcode »

;Sliced at: {day} {date} {time}
;Basic settings: Layer height: {layer_height} Walls: {wall_thickness} Fill: {fill_density}
;Print time: {print_time}
;Filament used: {filament_amount}m {filament_weight}g
;Filament cost: {filament_cost}
;M190 S{print_bed_temperature} ;Un comment to add your own bed temperature line
;M109 S{print_temperature} ;Un comment to add your own temperature line
G21 ;metric values
G90 ;absolute positioning
M82 ;set extruder to absolute mode
M107 ;start with the fan off
G28 X Y ; Home X and Y

;Deployment of the BLTouch (Optional if you don’t have any)

M280 S3.0 ; Deploy BLT probe pin

;Positioning the hotend over the middle of the build platform
; Here you need to adjust the values in orange to locate the center of the bed based on your machine size.
; G31 allows to provide a specific zone for probing. You need to change the values in pink so that the probing location always stays inside the build platform
;You can use Gcode Toolbox In order to optimize the values in pink
; http://doc.3dmodularsystems.com/gcode-toolbox-documentation/

G1 X200 Y150 F6000 ; Go to center of bed
G31 X20 Y35 A400 B260 ; Probe the bed and turn on compensation
G1 X200 Y150 F6000 ; Go to center of bed

; G30, followed by Zxxxx is your ZOffset.
;In order to find your ZOffset, with a BLTouch, deploy the probe, lower down your hotend until the BLTouch LED is lit. Write down the current Z location. Now move down untill the Nozzles is reaching the bed surface. Write down again the current Z location. Make the difference and you have your ZOffset

G30 Z1.4 ; Z Probe Offset
M280 S7.0 ; Retract probe pin

; This part was modified in order to start the print with enough pressure inside the hotend.

G1 X20 Y20
G92 E0 ;zero the extruded length
G1 F200 E30 ;extrude 3mm of feed stock
G92 E0 ;zero the extruded length again
G1 F{travel_speed}
;Put printing message on LCD screen

End.gcode

Here nothing to change.

 

PS_ON kit assembly

PS_ON kit wiring diagram

PS_ON kit wiring diagram

Working principle

This kit allows to electrically switch off your 3D printer when your print are finished

In order to achieve this, a power câble is being instrumented, and a static relay provide enough control for the 3D printer controler to allow this feature to work.

STL of the enclosure

The PS_ON enclosure box is available for download on thingiverse

Wiring in few steps

diagramme kit PS_ON
diagramme kit PS_ON

Detailed steps for wiring in pictures

Kit PS_ON


Modular switch



Power supply coord preparation





Power coord connection to static relay






Soldering of brown and yellow/green wires

After soldering the pairs of electric wires, make sure that the thrincable tubing is placed over the soldering location. Also make sure to thrink the tube using a matches, lighter…






Securing power cables



Signal cable wiring

In certain kits, this wire might already be wired to the static relay unit.

In the other case make sure to cut the 2 pins connector from the cable and to keep the part with the 3 pins connector.


Securing the signal wire inside the enclosure

Closing the enclosure

Kit PS_ON

Connection on 3D printer Controler board(Ramps 1.4)

raccordement du kit PS_ON sur Ramps 1.4

Gcode changes in your slicer (CURA)

PS_ON et Cura

PID auto tune

Temperature management by your 3D printer is often made using PID controller.

Requirements:

  • Pronterface (Windows, Mac)
  • Arduino IDE (optional)
  • 3D printer with active PID for the target heating element

Pronterface installation:

Pronterface is a cross platform host software for your 3D printer. It allows to send commands to your 3D printers in a simple way.

This application is stand alone and doesn’t require any installation

In order to be able to connect to your 3D printer you need to install the serial drivers of your electronic board.

Scalar 3D printers are using arduino MEGA 2560, so you only need to install Arduino IDE in order for the proper drivers to be installed.

Once you have downloaded the proper version of Pronterface , you will need to unzip it’s content in a folder.

Inside you should have the following file tree.

Pronterface PID

At this stage you will need to connect your 3D printer using a USB cable.

Once the drivers are installed, your OS will assign a specific COM port to your 3D printer.

Now you can launch « pronterface.exe »

The following window will appear

Pronterface PID

Warning!

Depending on your OS you might need the proper user rights in order to acces COM port

Consider running your application as Administrator

Once the drivers for the seria COM port are installed your 3D printer COM port should be visible inside the drop down list of Pronterface (1)

  1. You should see the proper COM port asigned to your Arduino MEGA inside this drop down list
  2. Select the baud rate to 115200Bps (at least for Scalar 3D printers)
  3. Push the Connect button.

Pronterface PID

Once connected you should have a lot of information coming into the console window on the left side of the application.

Pronterface PID

PID Auto tuning

PID auto tune has to be made when your heating element is at Ambient temperature. Otherwise you will get wrong parameters!

 

In the bottom part of the console view, you have a text box where you can enter single commands for your 3D printers,

Hot end PID

Iin order to perform the PID tuning of your hot end you will need to send the following command :

 M303 E0 S210 C8

E0 is for Extruder 0 (your hot end)  , S210 is the target temperature (here 201°C) and C8 is the amount of iterations to perform , Here 8. The higher the number the more accurate your PID will be.

Pronterface PID

you will need to wait a few minutes in order for the algorithm to converge to a set a values.

Pronterface PIDhere we found out

bias: 92 d: 92 min: 196.56 max: 203.75
Ku: 32.59 Tu: 54.92
Clasic PID
Kp: 19.56
Ki: 0.71
Kd: 134.26
PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h
#define DEFAULT_Kp 17.28
#define DEFAULT_Ki 0.63
#define DEFAULT_Kd 118.87

your PID values will be different from the one here

Take theses PID values into account

Use the following command in order for your controller to take the Ki, Kp, and Kd values into account

 M301 P17.28 I0.63 D118.87

Make sure you have updated the command with the PID values that you found!

Save your settings into the EEPROM

 M500

M500 allows to save your settings into the controller EEPRO


Heat bed PID Command

M303 E-1 S60 C8

Take the Heatbed PID values into account

 M304 P1 I2 D3

Save into EEPROM

 M500

 

 

(source http://reprap.org/wiki/PID_Tuning )

Plays a music at the end of a print

Requirements:

IIt is possible to play some music (8bits) at the end of your prints in the following cases:

  • If you have a LCD display with a Buzzer
  • If you electronic board supports an audio output
  • If your firmware supports M300 commands (Marlin, Repetier)

How does it work?

It is possible to  generate a certain amount of Audio sounds by modulating the output signal of the Display Buzzer.

M300  Gcode command allows to do just that.

You can have the full command details by looking at the dedicated page ::

http://reprap.org/wiki/G-code#M300:_Play_beep_sound

Can I find existing sounds/musics?

There are some tools that already exist. They allow you to convert any RTTTL format ringtones into M300 compatible Gcodes.

You can find one here: : http://ddrboxman.github.io/RepRapRingtone/ , it’s an online generator that can convert Ringtones into M300 compatible Gcodes.

This generator also allows to render the audio output of each convertion.

However, if you want a pack of already converted songs with more than 11000 ringtones check this link:

https://bitbucket.org/Nutz95/rtttl2gcode/raw/fd32c01fc9fa2f61b985f3c061954f183a9f3162/RingTones/Converted_RTTL_RingTones.zip

You will also find a batch convertor here::  https://bitbucket.org/Nutz95/rtttl2gcode/src

With the originals ringtones here: https://bitbucket.org/Nutz95/rtttl2gcode

How to proceed?

Each converted file has  Gcode extension.

Each .Gcode file is a simple text file that you can open and edit with a standard text editor such as notepad++, notepad or any other.

Here is an example of what is inside one of these converted files:

Open your slicer:

Each slicer should allow you to customize at least the start and the end of your gcode.

The part that we are looking for is to customize the end of our gcode, so that the music will play once the print is over.

The sollowing example is done using Cura .

In the Tab section of cura you will see « Start/End-GCode« .

inside you should be able to choose « end.gcode » from a list

Then a text zone will appear at the bottom with some text in color.

This text are the actual instructions used by your 3D printer when the print is finished.

Now you only need to copy/paste the content of your M300 converted ringtone file into the end of the text editor.

This is it!

now you can slice normaly any 3D object you want, your music will be played at the end of each new prints.

How to easily test your converted files?

Depending on your firmware version, the audio output of the songs might be crapy (For example,  marlin version before 1.1.0.RC3 better handle the audio output)

So it’s very interesting to test those songs before using them everywhere.

You can copy/paste the already converted files (with .gocde extention) into a SD card and play them directly from your LCD display.

Warning

Due to some memory restriction, firmwares are often limited to display a maximum amount of files per folder.

Adding directly the 11 000 files inside a single folder will most likely crash your firmware when it will try to list all the files.

So it’s advised to only test a pack of 20 or 30 files max per forlder.

 

A smoke detector module for 3D printer

 

A smoke detector module for 3D printer

One of the easy to find module for this purpose is displayed here.

Those sensors are often capable of detecting several types of Gaz/smoke/molecules.

 

 

 

 

Sensor main caracterisitics:

This model is a MQ2 gaz sensor module for arduino.

It can detect

  • Smoke
  • Hydrogen
  • Alcohol
  • MethanePpropane
  • I-buane
  • LPG.

It has 2 types of outputs:

  • Analog
  • Digital

The input voltage is 5V and the power consomption is about 800mw when « heating ».

Why does it consumes 800mW?

It can consume up to 800mW because the sensor needs to be at a certain temperature to operate properly.

In order to be warm enough, it’s equipped with a heating element that requires the 800mW to increase the sensor inner temperature.

The sensor needs a few seconds to be ready after switch on.

As the sensor needs to be at a certain temperature, you need to wait a few seconds so that it gives you the proper information.

If you both switch on the 3D printer and the sensor at the same time, the printer might detect from the very beguining some false alarm.

To prevent this:

  1. Power on the sensor module
  2. Wait a few seconds
  3. Power the 3D printer

The anolog output:

The sensor has an analog output.

The output voltage is proportional to the amount of particles detected.

On this output you cannot adjust the sensibility of the sensor as all is handled by a microcontroler or an electronic circuitry afterward.

The digital Output:

This output mainly uses the analog output value to operate and is triggered based on some voltage limit.

WIth this output you can adjust the sensibility of the sensor based on the blue trim at the back of the sensor.

 

 

 

 

Adjusting the trigger limit:

In addition to the blue trim, a red led will also switch on once the limit has been reached.

So you can adjust the level of this trigger by placing the sensor in the desired test environement and manually adjust the trim so that the led switches on or off.

You can use some humidificator to create smoke,smoke machine, cigarette smoke or even acetone or air spray to trigger the sensor.

Note: It’s important to know that the sensor reacts to the alcohol contained inside airspray as well as Acetone vapors.

So applying airspray during a print might trigger the alarm!

Also cleaning your heatbed with acetone while the sensor is on might also trigger it.

The wiring diagram:

This diagram shows an example on how to wire the module to a Ramps 1.4 board.

The board on the left allows to convert a 12V power supply into a 5V 1A power output.

The already available output pins are very nice to wire the sensor with a simple set of wires with connectors.

The current firmware of the Scalar 3D printers is able to use this sensor.

A ground wire also links the 5V breadboard with the ramps board.

In this example we are using the Digital output of the sensor as we can easily adjust the trigger level with a simple screw driver.

You can also use the analog output of this sensor, but you will need to play a little bit with the firmware settings as well as the debug outputs in order to adjust the trigger level.

The plastic housing

We already made some plastic housing models available on thingiverse:

http://www.thingiverse.com/thing:1103527

The current housing are specialy made so that you can fix all the different boards into 3030 aluminum extrusions (used in Scalar 3D printers)

Full kits available:

Full kits are available on our store:

http://3dmodularsystems.com/en/eletronic-components/61-gaz-detector-kit-for-scalar-3d-printer.html

Including:

  • 12V to 5 V 1A regulator board
  • MQ2 sensor module
  • 1 set of wires with dupont terminals

 

12V 360W power supply assembly

List of parts

  • 220V/110V – 12V 360W 30A power supply
  • Plastic cover +  LCD Voltmeter
  • IEC power connector + fuse holder and integrated switch
  • 3 x  M4x10 screws
  • 2 x M4x10 screws
  • 2 x M4 Nuts
  • 2 x 6cm black wires
  • 2 x 15cm black wires
  • 1 x 15cm green/yellow wires
  • [Not Provided] 1 cruciform screw diver

Préparation (vidéo)

Make sure the Power supply input power is compatible with your country, for example:

  • Europe : 220V
  • USA : 120V

 

 

 

Top Cover (vidéo)

Insert 2 M4x6mm screws inside the dedicated holes just next to the voltmeter LCD.
The screw head should be inside the cover letting the screw thread out of the cover.

 

 

 

 

Insert the power supply connector inside the dedicated hole and make sure the screws can go threw it.

 

 

 

 

 

Screw 2 M4 nuts on the M4 Screws thet goes out of the cover as shown on the picture.

 

 

 

Here is the inside view of the cover with the M4 screw heads that must be accessible with a screw diver in order to tight them up with their nuts.

 

 

 

Ground cable connection (vidéo)

Take the 15cm Yellow/Green cable and plug it on the side of the IEC connector the most inside the cover part.

 

 

 

 

Phases wires connection (vidéo)

 

Take the 2 small 6cm long phase wires (here with blue terminals), and connect them just next to the Ground wire (yellow/green).

 

 

 

Now connect the wire terminals on the connection pin on the same rows the same way as in the picture.
It’s more easy to connect them like the picture in a crossed over manner.

 

Connection of the last phases wires (vidéo)

Now take the 15 cm wires (here with red terminals) and connect them on the last 2 pins in the bottom row as shown in the picture:

 

 

 

 

Connection of the terminals on the power supply (vidéo)

Align the top cover as shown on the picture, with the power supply connector on the right side and the power supply terminals facing you.
You can also open the security cover on the power supply in order to have access to the terminals.

 

 

Ground wire connection (vidéo)

Connect the ground wire on the dedicated terminal on the power supply.

The corresponding terminal is the 3rd one starting from the right with the following symbol :

 

 

 

 

Here a zoom on the dedicated terminal

 

 

 

 

 

 

Phase wires connection (vidéo)

Now connect the 2 other phase wires on the terminals left on the right side of the power supply. Connect them on the terminals marked with « N » and « L » letters

 

 

 

Voltmeter connection

2 wires must be left, they are the ones of the Digital VoltMeter.
On the power supply side, you will find 6 free terminals.
They are separated in 2 groups:

  • +V
  • -V

The 3 terminals on the left of the power supply (the ones most outside of it) with the « +V » symbol correspond to the +12V output

You need to connect the Red wire from the digital Voltmeter to one of the +V terminals.
You can pick 1 of the 3 terminals on the left as you want.
The « Black » wire left will have to be connected on one of the 3 terminals on the certer of the power supply with the « -V » symbol
The following pictures show you how to proceed.

Zoom on the wires.

 

 

 

 

 

You can then close the security cover:

 

 

 

 

 

 

Output voltage tuning (vidéo)

This type of power supply allows to slightly adjust the output voltage using a small trim resistor and a screw diver.

 

In order to prevent you from any electrical hazard, we strongly recommend that you slightly close the cover before switching on the power supply. You might also consider having a quick access tuning trim (here on top of the picture.

  • Before switch the power on, make sure the Power switch is on the « 0 » position.
  • Also take a moment to check if a fuse is inserted inside the middle cavity (between the power switch and the power plug connector. You can remove the fuse cap with a small flat screw diver.The small chamber containing the fuse should be coming slowly.
  • Check that you have at least 1 fuse at the bottom of the chamber.
  • Push back the fuse cap in position.
  • Now, plug the power cable to the main power grid, and switch the power button on.

 

 

 

 

If everything goes well, the switch button should lit and the LCD voltmeter should show the current voltage output. here 12.4V. This value may vary for you, but you will tune it on the following steps so that you get 12.0

 

 

 

 

 

 

Take a screw diver and slowly turn it in one way and on the other way in order to align the power output to 12V.

 

 

 

 

Here is a zoomed picture on the trim resistor.

 

 

 

Once properly set you should have a stable 12.0V displayed on the LCD

 

 

 

Connection of the 12V output wires (vidéo)

  • Switch off thepower supply
  • Remove the power plug.
  • Take the 4 90cm long wires.

2 Wires  must have some Blue or black terminals and 2 other with red terminals .

 

 

Insert them into the front cover so that the terminals are inside the cover .
Also insert the other side of the wires having the red terminals inside the round holes with the « + » marking.
Regarding the wires with the blue terminals (or black), inser them inside the holes with  «  » marking.

 

 

All the terminals are inside the plastic cover.

 

 

 

 

 

The blue wires here have the Red terminals and the brown wires have the blue (or black) terminals

 

 

 

 

 

  • Now, connect the wires with the Red termials to the power supply terminals with the « +V » marking. They are mainly the one located on the left of the power supply just next to the green led.
  • The blue terminals wires should be left.Connect them on the free terminals on the power supply that should be around the middle with the « -v » marking

 

Closing of the cover (vidéo)

  • Push the plastic covert so that the side holes are aligned with the ones on the power supply .
    On one side you will need 1 M4 screw.
    On the other side you will need 2 of them

 

 

 

Fix the screws on their dedicated located.

 

 

 

 

 

Prepare the last 2 M4 screws on the other side of the cover.

 

 

 

 

 

 

Congratulation, your power supply is ready to be used.

Electronic assembly

List of parts :

  • 4  A4988 stepper drivers
  • 1 Arduino Mega 2560 (Funduino Mega)
  • 1 Ramps 1.4
  • set of jumpers  (optional)
  • 1 LCD 2004 display
  • 1 electronic plastic support
  • 2 triangular shape plastic support for LCD
  • 8 M3x10mm screws
  • [not provided] Screw diver

Arduino board preparation

Take the electronic plastic support  with 3 M3X10 screws  and the Arduino Mega board (here Funduino Mega)

 

 

 


Screw the arduino board with 3 screws, you will find 4 dedicated holes for that purpose, and some screws won’t fit some holes.Make sure you place the electronic board the same way as on the picture (the logo on the plastic support can give you some hints.

The plastic support has a direction as the holes for the arduino are not symmetrical.

The screws should fit on the top left corner, and at the bottom of the board (see picture)

It can happens that some screw heads won’t fit some holes and get stuck against the plastic connectors.

Try with some smaller screw heads if you have some.

If not only 2 or 3 screws should be enough, the main purpose is to keep the board attached on it’s support.


 

Ramps 1.4 assembly

Now take the Ramps board.

The jumpers should already be in place. If not you will have to place them on the proper pin header.

The jumpers are needed to configure the micro-steps used by the stepper drivers.

Placing 3 jumpers per stepper motor driver will configure them to use 16 micro-steps per step.In other words a stepper motor able to make 200 steps will see it’s possible amount of steps multiplied by 16 thanks to the stepper drivers.

 


Place the jumpers like on the picture. Between the rows of black female connectors between the capacitors( Round metallic components).

 

 

 


 

Arduino / Ramps Assembly

The next step is to assemble both boards together.

 

 

 

 


For this you need to place the ramps board (in red here) on top of the arduino board (here in blue).

The male connectors below the ramps board should align with the black female connectors of the arduino board.

Slightly press the Ramps board toward the arduino board.

Be very careful than all the pins or the ramps board are straight and fit perfectly into the female connectors.


 

Setup of A4988 stepper motor drivers

Now take the stepper motor drivers. It’s some small square modules . This model is provided usually with some small heat-sink with some tape below.

 

 

 


Return it them and remove the tape protection from them.

 

 

 

 


Place it on top on the bigger square chip set next to the variable resistor (the small trim).

Warning: Be very careful not to make any contact between the heat-sink and the other components surrounding it as well as the nearby pins.

 

 


Here a lateral view show how the heat sink is placed.

Also take care to avoid any contact with components that could be below the heat-sink.

 

 

 


A face vie showing the spacing between the heat sink and the pins on the side. If possible add more clearance than on the picture

 

 

 

 


Prepare another 3 of those modules.

At the end you should have 1 spare part . It can be useful if for any reason one of your stepper drivers get deteriorated or fail. You can also use it if you plan on using a 2nd extruder / hot end.

 

 


 

Placement of stepper motor drivers on the Ramps board

The next step is to assemble the stepper drivers on the ramps board.

 

 

 

 


Place the first driver on top of it’s dedicated slot.On the markings you should be able to locate the « X », « Y », and « Z ».

Those drivers are used to drive stepper motor on X, Y and Z axis.

Be very careful about how you insert the drivers as it has a polarity and cannot be reversed.

The potentiometer (trim) must be placed so that it’s in the opposite direction of the Green power supply input connector. The photo shows you an example.

WARNING: Double check the orientation of the drivers before going any further. If you invert the position you will destroy the chip.


 

Do the same for the whole row.

Once the 3 drivers are mounted the whole set of available female pins should be used!

If you have 1 of the stepper driver that has his pins not connected to anything, then you will need to replace properly the stepper drivers one by one.

 

 


Now insert the last stepper driver.

This last one is used to drive the extruder motor.

It’s dedicated placement is at the lower right of the board next to the output power supply terminals (here in blue).

The marking on the board should say « E0 »

 


Now you can place the green female connector on the power supply terminals.

 

 

 

 

 


 

LCD Setup

Prepare the LCD display and it’s associated plastic supports.

Take 4 M3X10 screws that will help you to fix the LCD on it’s supports.

On the 4 corners of the display you will find 4 screw holes for M3 screws.

 

 


Screw them so that the LCD knob is at the right of the LCD display.

 

 

 

 


Do that for both supports.

you should get something like the picture.

 

 

 

 


 

Connection of the LCD to the Ramps board

Now you still need to connect the LCD to the electronics previously prepared.

 

 

 

 


The LCD connector is like the picture with 1 set of long row of black female connector and a second set of 2×4 pin female connector.

 

 

 


On the opposite side of the green power connector you will find the corresponding set of male pins.

The LCD display connector is to be plugged on top of them.

The picture here shows you the end result.

Here be very careful that all the male pins are aligned with the female slots.

Warning:Sometimes a few pins might be slightly twisted.

With a flat screw diver slightly  straighten them without any force so that they will fit their corresponding female slots

 

 

Setup of End stops

List of parts :

  • 1 smooth rod support integrating the pre wired end stop.
  • 1 x 8mm (Scalar M) or 10mm (Scalar XL)  smooth rod compatible end stop support
  • 1 End stop with a wheel
  • 2 sets of M6x12mm screw and it’s T-Nut
  • 2 cable ties

 

Assembly of the Y axis end stop

Take the plastic part looking like a hook and clips it over the smooth rod near the X axis motor support .

Here we placed it on the top rod, but you can place it on the bottom one if you feel the end stop doesn’t hit the X carriage

 

 

 


Now take the end stop with the wheel and place it so that the wires are on the outside of the machine toward the stepper motor, and make sure that the wheel is heading toward the smooth rod.

The main prupose here is that the wheel would hit the X carriage to signal to the electronic that the carriage has reached the MIN position on X axis.

 


In order to allow the more natural position of the end stop’s wire, just make sure they go behind the threaded rod, between the threaded rod and the aluminum extrusion as shown on the picture.

Also secure the end stop on it’s support using 2 cable ties.

 

 


Bring the X axis carriage against the end stop and check that the wheel is properly pushed by the carriage and that the probe wire is well positioned.

If the probe wire is causing trouble, you might consider placing this end stop on the bottom smooth rod.

Also check that the end stop support is  not moving on the smooth rod to avoid possible future issues.

 


This picture shows the front view. The end stop is pushed against the x Carriage.

At this moment check that the nozzle position over the heat bed is reaching the border of it. If it’s not the case, just readjust the location of the end stop a little bit in order to achieve this goal.

 


In order to make sure tat the end stop is properly attached to the smooth rod, you can constraint it using the cable tie and secure the end stop lead wire with it as on the picture making sure it’s going behind the threaded rod.

 

 


Y Axis End stop installation

We are going to install here the end stop of the Y axis .

This items should already be assembled . You might need to remove the protective scotch however before using it.

You should have on your chassis 3 identical heatbed smooth rod supports and 1 other with the integrated end stop holder.

It is to be placed on the opposite side of the power supply, also on the opposite side of the Y axis motor on the same extrusion profile.

 


These 2 pictures should help you to locate the proper position of it.on your machine.

 

 

 

 

 

 

 

 


Now take the M4x20 screw and it’s 2 M4 nuts.

 

 

 

 

 


Place the nut at the middle of the screw thread.

 

 

 

 


Under the heatbed, you should have a special LM8UU linear bearing holder with a hole dedicated to this screw .

 

 

 

 


You should have this support aligned with the end stop holder.

 

 

 

 


Now insert the screw inside up to the nut

 

 

 

 

.


Adjust the screw depth so that the nozzle tip reach the edge of the heat bed.

 

 

 

 

 


Secure the Screw using the left over M4 nut.

 

 

 

 

 


(Goodies) Assembly of the Y axis end stop

Now you are going to assemble the Y axis end stop.

Take the plastic support that is compatible with 30×30 slots.

Prepare a set of M6x12mm screw and a T-Nut.

Place the end stop so that the contact side is placed toward the outside of the part. Also  center the end stop so that the dedicated holes on the plastic part for securing the end stop are aligned with the end stop holes.

The photo shows you how to place it.

 


secure it wit 2 cable ties.

A good tip is to make sure that the cable ties heads are placed on the left of the plastic part. The picture should help you to place them properly.

 

 

 


Place the whole assembly on the side of the Y axis motor near the YMI marked plastic part.

The lead wire of the end stop can be placed like on the picture, afterward the motor wires and the end stop wires will follow the some path.

 


 

The inverted view shows how the end stop contact is located and how the wires are going to be placed.

This position is also nice to protect the contact metallic plate from being broken.

 


 

Installation the Y axis end stop finger

Under the heat bed, make sure to be on the opposite side of the heat bed power cable.

Now take as reference the linear bearing support located the closest to the Y axis end stop.

On this photo the Top left linear bearing support

 


 

From this starting point, measure 100mm (10cm) on the right of it and then go down 25mm (2.5cm). Then make a mark.

Then go right again for 10 mm (1cm) and make a 2nd mark.

Both marks will be used to locate the screws for the Y axis finger holder

 


Now take the finger holder and place the 2 wooden screws to secure it in place at the location of the previous marks.

 

A M3X20mm screw and 2 nuts are to be used in order to adjust the Y MIN position of the heat bed.

 

Setup of the hot end auxiliary fan

List of parts :

  • 2 M3X25mm screws
  • 4 M3 washers
  • 2 M3 nuts
  • 1 blower fan
  • 1 GoPro fan support
  • 1 Fan shroud for blower fan

Take  1 screw,  1 nut and 2 washers as well as the GoPro fan support.

 

 

 

 

 


 

Now screw the GoPro Fan support on the blower fan, using the hole just next to the blower fan power wires .

Assemble it as follow: screw-washer –hole — washer – nut.

 

 

 


This photo shows the other side of the fan.

 

 

 

 

 

 


Place the whole assembly on the compatible support on the HotEnd block The photo shows you how to do it.

 

 

 


Secure it using the remaining fixation elements (M3x25mm screw, washer and nut).

You can place the screw head any way you want.

 

 

 


Now, tighten the whole thing enough so that the fan can be oriented but can stay in desired orientation.

 

 

 

 


Install the fan shroud as shown on the picture. This last part is to cool down  and harden the plastic just after it exists the hot end nozzle. You will need it when you will use PLA.

 

 

 


 

Rotate the fan block and adjust the orientation so that the blown air will cool down the bottom base of the nozzle.

Warning:  If the orientation is too much toward the hot end’s heater block, the fan will prevent the heater block from heating the plastic filament enough.