Raccordement des éléments électroniques – Scalar M – XL

Cette page est dédiée au raccordement des éléments électroniques des imprimantes 3D Scalar.

Sonde 5V ou 12V ? bien choisir son schéma de câblage.

  • La sonde 12V possède 1 connecteur Dupont 2 pin et un fil rouge en l’air.
    • File rouge en l’air : +12V
    • Fil noir : 0V-masse
    • Fil rouge avec connecteur Dupont : Signale

 

 

 

Voici le Schéma de câblage à utiliser


  • La sonde 5V possède 1 seul connecteur Dupont 3 pin et
    • 1 fil marron (+5V)
    • 1 fil Bleu (0V – GND)
    • 1 fil Noir (Signal)

 

 

  • La sonde 5V peut être fournie avec une rallonge possédant un connecteur 3pins Dupont avec des couleurs différentes:
    • 1 fil Rouge (+5V)
    • 1 fil Noir (0V – GND)
    • 1 fil Blanc (Signal)

Le branchement est similaire à la version précédente sachant que

  • Le fil rouge correspond au fil marron
  • Le fil Noir correspond au fil Bleu
  • Le fil Blanc correspond au fil Noir

 

 

Voici le Schéma de câblage à utiliser


Voici une vue générale de la connexion des éléments sur la carte électronique.

Schéma avec sonde à inductance 12V

Brachement électronique de la carte Ramps 1.4

Sur ce deuxième schéma vous trouverez un schéma qui correspond au kit fourni avec une sonde à inductance 12V, le ventilateur de tête chauffante et le ventilateur turbine auxiliaire.

Au niveau de la sonde à induction , elle est fournie avec 3 fils, 2 (rouge et noir) qui sont reliés à un connecteur dupont 2 pins, et 1 (rouge) avec un nœud qui correspond à l’alimentation de la sonde.

Schéma avec sonde à inductance 5V

Brachement électronique de la carte Ramps 1.4 avec sonde à inductance 5V

Ce schéma correspond aux kits fournis après le 17/10/2016.

Ce kit est fournis avec une sonde à inductance 5V qui possède un connecteur dupont noir à 3 pins. Ce dernier se connecte directement sur l’électronique sans raccordement supplémentaire.

Le fil marron de la sonde à inductance correspond à l’alimentation +5V. Le fil bleu à la masse de la sonde. Le fil noir correspond quand à lui au signal de sortie de la sonde.

Un extendeur 12V en forme de Y est aussi monté sur la carte électronique et permet de raccorder le ventilateur de votre tête chauffante au 12V de la ramps.

Vous devriez reconnaître tous les autres éléments. La couleur des câbles des moteurs sont donnés titre indicatif. Les fils des borniers de puissance correspondant à la réalité avec le fil rouge pour le +12V et le fil Noir pour la masse (+0V ou GND)

 


ASchéma de câblage de la carte Ramps 1.4 titre indicatif, voici le schéma officiel comme on peut le trouver sur le wiki de reprap.

Le schéma donne un peu plus de précision sur toutes les pins et les connecteurs optionnels.

 

 

Un mot à propos du connecteur vert d’alimentation

Connecteur d'alimenation Ramps 1.4Vous devez savoir que ce gros connecteur vert sur la carte Ramps peut se détacher de sa base, c’est un connecteur amovible.

Ceci veut dire qu’il est composé de 2 parties, et que la partie bornier peut être retirée de sa base.

La photo ici montre les 2 parties différentes de la pièce:

  • Sur la gauche on peut voir la partie amovible constitué des borniers
  • Au milieu, la partie fixe, soudée sur la carte Ramps
  • Sur la droite les 2 parties clipsés ensemble.

 


Raccordement des éléments électroniques

Carte ramps 1.4 sur imprimante 3D Scalar

En guise de support visuel, voici une photo de la carte électronique.

Si vous voulez comparer directement par rapport au schéma précédent il vous faudra effectuer une rotation de l’image d’un demi tour (180°)

 

 

 

Section dédié au montage pour les Scalar M et XL (non adapté au Scalar L et XL Premium)


Câble du moteur de l'axe Y

Câble du moteur de l’axe Y

Pour le support de fin de course autonome, (c’est un support optionnel que vous pouvez imprimer vous même) Commençons par les câbles qui se trouvent au niveau de l’axe Y, sous le plateau chauffant.

Prenez aussi 2 clips « long » et 1 serre câble.

 

Raccordement de l'intérrupteur de fin de course de l'axe YPour le support avec le support de fin de course intégré, c’est très facile, la photo vous montre comment les fils sont placés.

 

 

 

 

 


Passage du fil du moteur de l'axe Y

Passage du fil du moteur de l’axe Y

Faites passer les câbles par l’intérieur du châssis.

Vous devriez avoir 2 fils pour l’interrupteur de fin de course et 4 fils pour le moteur de l’axe Y.

Réunissez les ensemble et passez les dans la gorge du profilé juste derrière le support de moteur

 


Installation des clips de fixation

Installation des clips de fixation

Vue de l’intérieur de la machine, les câbles peuvent aisément passer dans la gorge intérieur du profilé supportant le moteur.

Avec 2 clips long, sécurisez les dans les gorges. L’utilisation de clips court n’est pas recommandé car ils vont surélever la machine de quelques millimètres de ce côté. L’utilisation de clips « long » permet de conserver les attaches en plastique au dessus de la machine.

 


Attache du câble du moteur de l’axe Y

Attache du câble du moteur de l’axe Y

(Scalar XL) Dans le coin du châssis ou se trouve le relais statique, attachez avec un serre câble les fils qui sortent du profilé aux câbles provenant du lit chauffant.

Cela permet de sécuriser tout l’ensemble à un même endroit.

 

 

 


(Scalar XL) Serrez le collier définitivement.

 

 

 

 

 


Câble de l’interrupteur de fin de course

Câble de l’interrupteur de fin de course

Prenez le connecteur correspondants à l’interrupteur de fin de course

 

 

 

 


Câblage du end stop Y

Câblage du end stop Y

A tout moment référez vous au schéma de câblage en début de page si vous avez un doute ou pour clarifier la photo.

Positionnez donc le connecteur de l’interrupteur de fin de course Y sur son emplacement, Prenez la peine de lire tout le paragraphe qui suit afin de mieux comprendre ce que vous faites.

Sur la photo, tout le bloc de pin situé en bas à gauche est dédié aux capteurs de fin de course.

Il y a 3 rangées de pins de haut en bas.

La première rangée correspond à l’alimentation +5V.

La deuxième rangée correspond à la masse +0V (GND)

La dernière rangée correspond au signal connecté directement à l’arduino.

Attention: Ne connectez jamais la rangée du haut avec la rangée du milieu sous peine de faire un cours circuit lorsque l’interrupteur se fermera. Si il vous arrive de court-circuiter ces 2 rangées, vous allez griller le bloc d’alimentation (+5V) généré par l’arduino, provoquant ainsi de sévère dommage à l’arduino.

Important: Tous les capteurs de fin de course doivent se connecter sur la rangée du milieu et sur la rangée du bas.

Pour compléter l’explication, on peut connecter jusqu’à 6 fin de course sur une imprimante 3D. Pour chaque axe on peut donc connecter des fins de course pour la position MIN et MAX.

Le firmware permet de simplement utiliser les fin de course MIN. Le firmware se charge ensuite d’avoir en mémoire la position MAX t de simuler un fin de course virtuel.

On peut donc se réduire à l’utilisation de seulement 3 fin de course.

Chaque colonne est dédié à un fin de course en particulier.

Chaque Axe est donc regroupé sur 2 colonnes côte à côte.

En commençant par la droite de la photo, vous aurez les connecteurs suivants:

  1. X MIN
  2. X MAX
  3. Y MIN
  4. Y MAX
  5. Z MIN
  6. Z MAX

Nous allons donc connecter le fin de course Y MIN en bas de la 3ème rangée en partant de la droite.

Très important: Les drivers de moteurs ne supportent pas d’être mis en marche sans moteurs attaché, cela peut endommager de manière irréversible le composent électronique.

Veilliez donc à toujours avoir un moteur de connecteur sur chaque driver moteur que vous montez sur votre carte électronique!

SI vous utilisez seulement 4 axes (X, Y Z et E0) et que vous avez 5 driver, n’en montez que 4 et gardez le 5ème de côté dans son emballage. Il peut éventuellement vous servir de pièce détaché si 1 des driver tombe en panne ou est endommagé.

 


Thermistor du plateau chauffant

Thermistor du plateau chauffant

Passons maintenant au thermistor qui se trouve sous le lit chauffant.

Repérez son connecteur, vous allez le connecter à la carte électronique.

 

 

 


Thermistor du plateau chauffant

Thermistor du plateau chauffant

Les connecteurs dédiés au thermistor se situe juste au dessus de ceux dédiés au fins de courses.

Vous allez trouver 6 pin sur la même ligne avec le marquage T0, T1, T2 juste en dessous.

  1. T0 correspond au thermistor de la tête chauffante.
  2. T1 correspond au thermistor du lit chauffant
  3. T2 correspond à un thermistor optionnel d’une deuxième tête chauffante.

Connectez donc le thermistor du lit chauffant sur la 3ème et 4ème pin en partant de la droite correspondants à T1


Câble moteur de l'axe Y

Câble moteur de l’axe Y

Prenez maintenant le connecteur du moteur de l’axe Y.

 

 

 

 

 

 

 


Câble moteur de l'axe Y

Câble moteur de l’axe Y

Les pins dédiés aux différents moteurs se situent toute en dessous des drivers de moteurs avec les petits radiateurs.

Vous pourrez trouver des marquages vous indiquant à quel moteur tel ou tel driver moteur est associé.

Sur la ligne du haut, vous avez 3 driver moteur l’un à côté de l’autre. De droite à gauche vous avez le driver du moteur pour les axes suivants:

  1. Axe X (marqué X)
  2. Axe Y (marqué Y)
  3. Axe Z (marqué Z)

Au niveau de la deuxième ligne vous avez ici sur la photo 1 seul driver moteur et un emplacement libre pour un 5ème driver moteur.

Ces emplacements sont dédiés aux extrudeurs qui poussent le filament plastique.

De droite à gauche:

  1. Extrudeur 0 (marqué E0)
  2. Extrudeur 1 (marqué E1)

Connectez donc votre câble de moteur Y sur le connecteur du milieu de la première ligne.


Câble moteur de l'axe X

Câble moteur de l’axe X

Passons au connecteur du moteur de l’axe X

 

 

 

 


Câble moteur de l'axe X

Câble moteur de l’axe X

Ce dernier vient se connecter à droite du moteur de l’axe Y au niveau de la première ligne.

 

 

 

 


End stop de l'axe X

End stop de l’axe X

Passons au fin de course de l’axe X

 

 

 

 

 


Ce dernier vient se brancher sur le bas de la première colonne en partant de la droite, du lot de pin dédiés au fin de course.

 

 

 


Toujours du même côté de la machine, il vous reste le câble du moteur de l’axe Z.

 

 

 

 

 


L’axe Z possédant 2 moteurs de part et d’autre de la machine, vous trouverez donc 2 lignes de 4 pins en dessous du driver moteur dédié à l’axe Z.

Il faut savoir qu’ici un seul driver pilote les 2 moteurs à la fois.

Connectez donc votre moteur sur l’une des deux lignes dédié à cet effet.

 


Connexion du relais statique

Connexion du relais statique

Toujours du même côté il faut que vous connectiez le relais statique à la carte électronique.

Commencez par prendre un câble noir livré avec le relais statique.

 

 

 


Connexion du relais statique

Connexion du relais statique

Serrez le dans le bornier possédant le marquage « – » et le numéro « 4 »

 

 

 

 


Raccordement du relais statique sur la carte Ramps

Raccordement du relais statique sur la carte Ramps

L’autre extrémité du fil vient se connecter sur le bornier (ici bleu) de puissance au niveau du marquage « D8 ».

Chaque bornier possède sur cette colonne un identifiant et un petit marquage « + » qui identifie la sortie +12V.

Connectez donc au niveau du bornier D8 le fil sur le bornier dédié au « – » en dessous du marquage « + ». Donc sur le deuxième bornier en partant du haut.


Raccordement du relais statique

Raccordement du relais statique

Au niveau du relais statique, connectez maintenant le deuxième fil (en principe Rouge et noir ici sur la photo).

 

 

 


Raccordement du relais statique

Raccordement du relais statique

Vissez le sur le dernier bornier de libre en principe possédant le marquage « + » et identifié par le chiffre « 3 ».

 

 

 

 


Raccordement du relais statique sur la carte ramps

Raccordement du relais statique sur la carte ramps

Connectez l’autre extrémité du câble au niveau du tout premier bornier (ici bleu) en partant du haut , juste au dessus du bornier utilisé pour le « – » précédemment.

 

 

 


 

Scalar XL:

Sur le lit chauffant de la XL, ce dernier possède un fil de terre de couleur Jaune et vert..

Le but de ce fil est d’être connecté au châssis métallique de votre machine.

En effet, si un des fils d’alimentation du 220V vient à toucher le châssis pour n’importe quel raison, le disjoncteur de votre maison vous protégera d’un danger électrique si vous touchez le châssis à ce moment précis.

Afin d’assurer une meilleur connexion, il est intéressant de relier la cosse ronde au niveau d’une des vis M6 de votre châssis..

Raccordement de la terre du lit chauffant

Raccordement de la terre du lit chauffant

Ici vous trouvez un exemple d’endroit où le connecter! Nous avons choisis de le connecter au niveau d’une équerre métallique car sa proximité et sa conduction électrique sont optimales pour ce type d’application.

 

 

 

 


Câblage de la carte ramps

Câblage de la carte ramps

La photo vous précise avec un jeu d’étiquettes ou se trouvent les bons borniers

 

 

 

 

 

 


Commencez par séparer les fils partant du relais statique des autres fils.

 

 

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Glissez les dans la gorge du profilé vertical.

Vous pouvez les faire tenir dans leur logement à l’aide de 2 clips « long » positionnés respectivement en haut et en bas du profilé. comme sur la photo.

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Intégrez les fils provenant du moteur Y avec son fin de course dans le même logement par dessus les câbles d’alimentation du relais statique.

Pour cela vous allez devoir retirer les clips de fixation un par un afin de glisser par dessous les câbles puis remettre les clips.

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Maintenant faite aussi passer les fils provenant du moteur Z dans la même gorge du profilé verticale en bloquant les câbles avec le clips déjà en place.

 

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Il vous reste maintenant 2 jeux de câbles provenant du moteur de l’axe X.

Les câbles vont devoir monter et descendre en même temps que tout l’axe X.

 

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Prenez en main les deux câbles sortant du côté du moteur de l’axe X

 

 

 

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Prenez bien les deux jeux de câble , un avec 4 fil et le dernier avec 2 fils. Comme ils vont bouger en même temps il est intéressant de les regrouper ensemble et de bien vérifier que la longer des câble est suffisante afin de permettre le mouvement vertical entier

 

 

 


L’idéal est d’avoir le chariot de l’axe X le plus en haut ou en bas possible afin de vous aider à estimer la longueur de fil nécessaire.

Ici, notre chariot est en bas et nous évaluons grossièrement la longueur de fil qu’il faut pour monter. A ce moment conserver la position limite du câble (ici notre main en haut)

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Vous pouvez sécuriser tout l’ensemble dans la gorge du profilé en laissant soit pendre le câble par le haut ou par le bas.

Sécurisez le avec un clips au niveau de la position limite du câble laissant ainsi la longueur nécessaire libre au mouvement.

 

 


Positionnement des câbles de la Scalar

Positionnement des câbles de la Scalar

Il est tout à fait intéressant de rajouter des serres câbles sur ce tronçon de câblage.

 

 

 

 


Positionnement des câbles de la tête chauffante

Positionnement des câbles de la tête chauffante

Passez maintenant au tronçon de câble qui se situe au niveau de la tête chauffante.

Positionnez le au milieu du profilé supérieur.

 

 

 


Positionnement des câbles de la tête chauffante

Positionnement des câbles de la tête chauffante

Afin de laisser suffisamment de câble libre nécessaire au mouvement, positionnez le chariot à une extrémité de son axe.

Laissez suffisamment de câble libre pour monter et descendre et aller dans les coins.

 

 


Clips de fixation

Clips de fixation

Prenez 3 clips, dont 2 long et 1 court.

Ils vous permettront de tenir en place les câbles qui vont passer dans les gorges du profilé supérieur.

 

 

 


Clips de fixation

Clips de fixation

Commencez par sécurisez votre tronçon en place avec un clips long en faisant passer les câble dans la gorge supérieure du profilé.

 

 

 

 


Avec un deuxième clips « long », maintenez en place le prolongement du tronçon de câble en l’orientant vers la carte électronique.

Laisser de côté proprement la terminaison des câbles que nous connecterons plus tard.

 

 


positionnement du câble d'alimentation 12V

positionnement du câble d’alimentation 12V

Prenez les câbles libre qui sortent de l’alimentation .

Il est à noter que tresser les 4 câbles de puissance permet un meilleur maintient dans la gorge du profilé et permet aussi d’éviter simplement les nœuds avec les autres câbles plus tard.

Sur les modèles récent vous aurez des câbles Rouge et Noir.

Rouge: +12V

Noir: 0V

 


Positionnement du câble du moteur gauche

Positionnement du câble du moteur gauche

Repérez et prenez le connecteur correspondant au deuxième moteur de l’axe Z, dont nous avons déjà passé le câble dans le profilé vertical. Ce dernier devrait ressortir à côté de l’alimentation si on se réfère au câblage précédemment effectué.

 

 

 


Passage du câble du moteur gauche sur Scalar XL

Passage du câble du moteur gauche sur Scalar XL

Passez le dans la gorge latérale du profilé supérieur et sécurisez le avec le dernier clips court que vous avez.

Profitez en pour passer le reste du câble dessous les clips déjà montés.

 

 

 


Raccordement du câble du moteur Z sur la carte Ramps

Raccordement du câble du moteur Z sur la carte Ramps

Connectez le sur la ligne de pins du driver de moteur Z disponible. Ici en haut à gauche.

 

 

 

 


Raccordement de l'extrudeur

Raccordement de l’extrudeur

Prenez le dernier connecteur de moteur disponible, celui du moteur de l’extrudeur.

Ce dernier doit passer derrière l’alimentation, dans la même gorge de profilé que pour le moteur de l’axe Z.

 

 


Raccordement de l'extrudeur

Raccordement de l’extrudeur

Cela devrait ressembler à la photo.

 

 

 

 

 


Raccordement de l'extrudeur sur la carte Ramps

Raccordement de l’extrudeur sur la carte Ramps

Connecter le au niveau de la carte électronique sur les dernières pins réservé au moteur au niveau du driver avec le marquage E0.

Ici sur la deuxième ligne de driver moteur, tout à droite.

 

 


Câble d'alimentation 12V

Câble d’alimentation 12V

Le câble passe dans la même gorge que celle du moteur Z.

 

 

 

 


Passage du câble d'alimentation dans les gorges du profilé

Passage du câble d’alimentation dans les gorges du profilé

Il vous reste le câble tressé d’alimentation à positionner par dessus les 2 câbles de moteur dans la même gorge de profilé.

Les clips doivent permettre de tenir correctement tous les câbles.

 

 

 


Raccordement du 12V sur la carte Ramps

Raccordement du 12V sur la carte Ramps

Connectez vos câbles d’alimentation général au gros bornier vert.

L’ensemble est polarisé, donc vérifiez bien que les connections sont compatible « + »-> »+ » et « – » -> « -« .

Sur cette photo, les câbles Bleu/Rouge sont reliés aux sorties « +12V » de notre alimentation et les câbles Marrons/Noir sur les sorties « -« .

 

 


Raccordement du 12V sur la carte Ramps

Raccordement du 12V sur la carte Ramps

Au niveau du bornier d’alimentation vert , un marquage vous donne la polarité de chaque bornier.

Afin de faire ressortir leur polarité sur la photo nous avons rajouté une petite étiquette.

Les câbles de masse (ici marron ou Noir) se connectent sur les borniers avec la polarité « -« .

Les câbles d’alimentation +12v (ici bleu ou Rouge) sur les autres marqué « + ».

 

 


Raccordement du 12V sur la carte Ramps

Raccordement du 12V sur la carte Ramps

une fois tous raccordés cela devrait ressembler à la photo.

 

 

 

 

 

 

 


Câble de la turbine de refroidissement

Câble de la turbine de refroidissement

Maintenant, passez aux câbles d’alimentation du ventilateur de tête chauffante (la turbine).

 

 

 

 


Raccordement de la turbine de refroidissement sur la carte ramps

Raccordement de la turbine de refroidissement sur la carte ramps

Connectez les sur le bornier de sortie (ici bleu) au niveau du marquage « D9 » correspondant aux bornier du milieu de la colonne.

Le fil rouge correspondant au +12V sur connecteur sur le bornier avec le marquage « + » (ici le 3ème en partant du haut)

Connectez ensuite le fil noir correspondant au « – » (GND) juste en dessous.

 


Câble du ventilateur de tête chauffante

Câble du ventilateur de tête chauffante

Prenez les fils fin reliés au ventilateur de la tête chauffante.

Sur les version récente vous devriez avoir un connecteur au bout de ce câble d’alimentation. Conservez-le.

Le ventilateur devant fonctionner impérativement en permanence, il sera relié à l’entrée 12V de la carte électronique.

Si vous avez un câble en forme de « Y » déjà connecté sur la carte électronique, connectez votre ventilateur sur ce dernier en reliant le fil rouge du ventilateur sur le fil rouge du câble en Y. M^me chose pour le fil noir.

Ce câble en Y est relié directement sur le 12V de la carte ramps.

Dans le cas contraire vous pouvez suivre l’étape suivante qui vous montrera un montage alternatif.

 


Raccordement du câble d'alimentation du ventilateur de tête chauffante

Raccordement du câble d’alimentation du ventilateur de tête chauffante

Cet exemple est donné à titre indicatif pour les anciennes version du kit de la machine.

Si vous avez un câble en for de « Y », connectez directement le ventilateur sur ce dernier.

Dans le cas contraire vous pouvez suivre cette étape.

Le fil rouge (+12V) se connecte sur une des entrés du bornier vert possédant le marquage « + ».

Ici nous utilisons le deuxième bornier vert en partant du haut.

Le fil noir de la masse (0V) se connecte sur le bornier supérieur avec le marquage « – »

 

 


Raccordement du thermistor de tête chauffanteConcernant le câble du thermistor de la tête chauffante, ce dernier se connecte sur les 2 pins marqué « T0 » à droite du thermistor dédié au lit chauffant.

Ici le tourne vis montre son emplacement.

 

 

 

 


Câble de la cartouche chauffante de la tête chauffantePassez au câbles de la cartouche chauffante de la tête chauffante.

Il peuvent être rouge ou bleu selon le modèle et la puissance de la cartouche.

 

 

 

 


Ils se connectent sur les derniers borniers de sortie (bleu) tout en bas.

La cartouche chauffant étant principalement un élément résistif, les câbles n’ont pas de polarité + et – et peuvent dont être connecté sur n’importe lequel des 2 derniers borniers de la colonne.

 


Maintenant, prenez le connecteur et le fil rouge laissé libre, qui correspond à la sonde à inductance.

 

 

 

 


Le câble rouge laissé seul se connecte donc sur un bornier vert avec le marquage « + ». Prenez n’importe lequel, ici pour u souci de répartition des câbles et des charges nous vous proposons de le brancher sur le bornier vert le plus en bas.

 

 

 


Le connecteur avec 3 pin dont 2 sont câblés se branche sur les pins dédié à Z MIN.

Note: Sur certain kits la sonde à inductance est fournie avec un connecteur dupont 2 pins et un fil rouge et un fil noir.

Attention, ce câble est polarisé!

Les deux fils doivent toujours être sur les deux dernières lignes, avec le connecteur laissé libre sur la première.

Pour la version avec le connecteur 2 pins, ce dernier doit aussi être connecté sur les 2 dernières lignes.

Le fil vert ou rouge correspond au signal de la sonde, il doit donc être connecté sur la ligne dédié au signal (la dernière ligne).

Le fil noir quand à lui est la masse (0V) de la sonde. Il doit donc être connecté sur la deuxième ligne (ligne du milieu)




Re-Arm – Upgrade 32Bits pour imprimante 3D Scalar

Re-Arm

Description de la carte Re-Arm

La carte Re-Arm permet de booster les performances de votre imprimante 3D.

Elle possède

  • un contrôleur ARM LPC1768 32bits cadencé à 100Mhz
  • 512KB de Flash
  • Est directement compatible avec les cartes Ramps 1.4
  • Possède des sorties 5V contrairement à beaucoup de contrôleurs équivalent du marché actuel.
  • Support les afficheurs Graphique RRD GLCD
  • Supporte un module Ethernet
  • Supporte des drivers moteurs pouvant aller jusqu’à 1/128 micros-pas (les SD6128 par exemple)
  • Fonctionne avec le firmware Smoothieware (une adaptation est en cours pour Marlin).

C’est donc un candidat idéal pour booster/upgrader vos imprimantes 3D basé sur des Arduino Mega 2560 + Ramps 1.4

Ici en gros le détails des pins d’expansions disponible à l’arrière de cette carte.

 

Installation de la carte

La procédure est vraiment très simple. Il vous suffit de retirer votre carte Arduino Mega 2560 de votre carte Ramps et de plugger la carte Re-Arm directement sur la carte Ramps à la place de l’Arduino.

Schéma de raccordement global des différentes options

En l’état actuelle, avec le firmware Smoothieware, la carte ne supporte que l’afficheur Graphique RRD GLCD.

Raccordement du +5V

Voici un point important à prendre en compte lors de votre upgrade

  • Enlever le potentiel jumper situé juste à côté du connecteur vert d’alimentation

Avec une carte Arduino, ce jumper permet d’alimenter le bloque dédié aux servo moteurs en +5V.

Si vous laissez le jumper en place, la carte Re-Arm alimentera les servo moteurs en +3.3V ce qui est largement insuffisant.

  • Utilisez le câble de 20cm Femelle-Femelle fourni,  pour relier le +5V de la carte Re-Arm (ici à gauche) à la pine du milieu de la rangée de connecteurs se trouvant entre le bouton reset et le connecteur vert d’alimentation (ici à droite).

Raccordement de l’afficheur Graphique

La partie de gauche vous montre comment raccorder l’afficheur LCD avec la carte d’adaptation.

  • Attention! Faites très attention à la position des détrompeurs visibles sur ces photos. Certains afficheurs peuvent être fournis avec les connecteurs rectangulaires noir soudés à l’envers!
  • Attention! Ici également il vous faudra raccorder le fil tout seul +5V partant de l’afficheur LCD vers la carte d’adaptation. Il se connecteur sur la carte Re-Arm au niveau d’une des sorties +5V comme sur la photo.

Raccordement du BLTouch

Ici le raccordement est identique par rapport à un montage antérieur.

Raccordement du module de détection de fin de filament

 

Le firmware:

Installation du firmware

  • Télécharger le fichier qui se rapproche le plus de votre machine / configuration
  • Dézipper les fichiers .Zip. vous allez trouver 2 fichiers: Firmware.bin et config.txt
  • Ces 2 fichiers sont à copier sur la carte Micro SD que vous devrez insérer dans la carte Re-ARM.
  • Démarrez la carte.
    • Lorsque vous mettez à jours le firmware, la carte va mettre quelques secondes à démarrer. Si l’afficheur LCD graphique est installé, ce dernier va émettre un bip pendant toute la durée ou la procédure de mise à jour se déroule. N’éteignez pas votre machine avant la fin de la procédure! (10 secondes maximum)
    • Une fois le firmware installé, l’afficheur graphique devrait afficher quelque chose à l’écran.

Configuration dans Cura

Avec le firmware Smoothieware la procédure de démarrage se passe de manière un peu différente par rapport au firmware Marlin.

Start.gcode

Voici ce que vous devez avoir dans votre « Start.gcode »

;Sliced at: {day} {date} {time}
;Basic settings: Layer height: {layer_height} Walls: {wall_thickness} Fill: {fill_density}
;Print time: {print_time}
;Filament used: {filament_amount}m {filament_weight}g
;Filament cost: {filament_cost}
;M190 S{print_bed_temperature} ;Uncomment to add your own bed temperature line
;M109 S{print_temperature} ;Uncomment to add your own temperature line
G21 ;metric values
G90 ;absolute positioning
M82 ;set extruder to absolute mode
M107 ;start with the fan off
G28 X Y ; Home X and Y

;Déployement du BLTouch (optionel si vous n’en avez pas)

M280 S3.0 ; Deploy BLT probe pin

;Positionnement au centre de votre lit chauffant
; ici il faudra changer les valeurs en orange par la position correspondant au centre de votre lit
; Le G31 permet d’effectuer la prise de mesure de l’auto nivellement à l’intérieur de la zone d’impression Il faut que les valeurs en roses soient toujours inférieure à la taille max de votre plateau
;Vous pouvez utiliser Gcode Toolbox afin d’ajuster de manière optimale la partie en Rose
; http://doc.3dmodularsystems.com/gcode-toolbox-documentation/

G1 X200 Y150 F6000 ; Go to center of bed
G31 X20 Y35 A400 B260 ; Probe the bed and turn on compensation
G1 X200 Y150 F6000 ; Go to center of bed

; G30, suivit de Zxxxx correspond à votre Zoffset. La valeur est simple à trouver.
; dans le cas d’un BLTouch, déployez votre sonde puis descendez la buse jusqu’à ce que la LED du BLTouch s’allume. Notez la position de Z. Ensuite descendez la buse jusqu’à ce que la buse frôle le plateau. Relevez la position en Z. Faites la différence avec la valeur précédente et vous avez votre Zoffset.

G30 Z1.4 ; Z Probe Offset
M280 S7.0 ; Retract probe pin

; Cette partie à été modifiée afin de commencer l’impression avec assez de pression dans la buse.

G1 X20 Y20
G92 E0 ;zero the extruded length
G1 F200 E30 ;extrude 3mm of feed stock
G92 E0 ;zero the extruded length again
G1 F{travel_speed}
;Put printing message on LCD screen

End.gcode

Ici rien de spécial à changer.

 




Scalar S – Upgrade plateau à double entraînement

upgrade plateau à double entraînementCette page décrit l’installation de l’upgrade à double entraînement du plateau de la Scalar S.

Il sous entend que vous avez une Scalar S, dans sa version standard, et que vous êtes sur le point de faire une upgrade de l’axe Y.

Cette upgrade est purement mécanique.

Elle ne nécessite aucune modification au niveau du firmware.

 

 

Démontage du plateau

scalar S, upgrade plateau à double entraînement


Démontage de la courroie

Il est préférable de démonter votre courroie avant de continuer.

Conservez la bien car vous allez la ré-utiliser à la fin de la procédure.


Repositionnement de l’axe Y Existant


Assemblage du rail

Voir la procédure ici


Installation du nouvel axe


Synchronisation des 2 côtés

Enlevez la vis noir déjà positionné du montage d’origine .

Conserver la vis Noir pour plus tard

Attention à l’orientation des poulie!

Ne pas serrer les poulies


Serrage des vis de stabilisation

Ces vis permettent de stabiliser les profilés afin d’éviter qu’ils ne pivotent pendant les impressions.

Vue de l’arrière on installe la vis M5x35 qu’on à récupéré lors du passage de la tige de synchronisation juste avant.


Installation du nouveau plateau bas pour le double entraînement


Fixation de la plaque chauffante


Mise en place des courroies

Suivre la procédure ici


Alignement du plateau à double entraînement

Cette étape permet de s’assurer que votre plateau est bien orthogonal à votre châssis

Cette étape sous entend que vos poulies ne sont pas serrés sur leurs axes. Elles doivent être libre pendant toute la phase d’alignement.Le serrage de ces dernières s’effectue à la fin.

Une fois que vous avez vérifié qu’un côté est bien positionné sur votre châssis, vous pouvez visser les supports de profilé rouge sur votre châssis d’un seul côté.

Ici on visse la partie droite des supports. Ceci va nous permettre de plus facilement aligner l’autre côté.

 

Faites coulisser le plateau vers l’arrière de votre imprimante. L’axe gauche de votre plateau devrait s’aligner une fois le plateau en buté.

Maintenez le support de profilé en plastique et profitez-en pour le visser.

Maintenant faites glisser le plateau vers l’avant du châssis afin de terminer l’alignement du dernier coin.

Puis une fois en place vissez le dernier support en place

Vous pouvez vérifier le centrage du plateau en vous aidant de votre tête chauffante et en vérifiant que cette dernière peut se déplacer au dessus de tout le plateau. Vous pouvez déplacer/ajuster la position de votre fin de course X afin de caler correctement à la nouvelle position de votre plateau.

En principe votre plateau devrait se déplacer librement en avant et en arrière sans points de blocage liés au parallélisme.

Aussi votre plateau devrait être parfaitement parallèle à votre châssis de machine. Vous pouvez vérifier ça en plaçant l’extrémité avant de votre plateau au même niveau que l’avant de votre châssis. Votre plateau devrait être parallèle au châssis.

Fixation des poulies sur leurs axes

Maintenant que votre plateau est aligné avec votre châssis, vous devez vissez les 4 poulies de votre plateau!




Calibrer votre sonde d’auto-nivellement sans écran LCD

Cet article vous donne la procédure de calibration de votre sonde d’auto nivellement sans écran LCD.

Cet article sous entend l’utilisation du firmware Marlin RC8 ou au delà et une imprimante 3D de type Scalar S sans écran LCD.

Pré-requis

Lancement de pronterface

Une fois dézippé, entrez dans le répertoire de pronterface et lancez l’exécutable « pronterface.exe » en mode « Administrateur » via le menu qui apparaît grâce au click droit de la souris au dessus de l’exécutable.

L’interface utilisateur de pronterface se lance alors.

Calibration du ZOffset

Sélectionnez le port com correspondant à votre imprimante 3D.

Appuyez sur le bouton « Connect » pour initier la connexion à la machine.

Si la connexion s’est effectuée correctement, une liste d’information apparaît alors dans la console à droite de l’application.

Les information qui nous intéressent sont :

  • La version de Marlin (RC8 ou au delà)
  • la valeur du ZOffset en bas (ici -0.10mm)

Pour régler le Zoffset on va imprimer une pièce de calibration compatible avec la Scalar S et un filament de 1.75mm.

Cliquez sur le bouton « Load File »

Puis allez chercher le fichier « Scalar_S_Calibration_retraction.gcode »

Cliquez sur « Print » pour initier l’impression

SI votre première couche est trop haute il vous faudra:

  1. Arrêter l’impression en appuyant sur la touche « Off« 
  2. Modifier le Zoffset en utilisant la commande M851 Zxxxx avec xxxx étant la nouvelle valeur de l’offset
  3. Sauvegarder la valeur dans la mémoire de l’imprimante en exécutant la commande M500
  4. relancer l’impression et vérifier que la hauteur de la première couche est bonne
  5. Dans le cas contraire reprendre à l’étape 2.

Ici on montre comment modifier le ZOffset en tapant la commande M851 Z-0.3 dans la console. On valide ensuite en cliquant sur le bouton « Send » situé à la droite de la zone de texte.

Notez bien que:

  • Pour faire descendre la buse au niveau de la première couche il faut que votre ZOffset soit « Négatif« .
  • Décrémenter la valeur d’un pas de 0.1 ou de 0.2 (ex: passez de -0.10 à -0.30)
  • Si votre buse semble bien éloignée du plateau vous pouvez décrémenter la valeur de 0.5

pronterface auto-nivellement marlin ZOffset

Relancez l’impression à l’aide du bouton « Restart »

Sauvegarder votre Zoffset en mémoire à l’aide de la commande M500




Upgrade – Kit de renfort pour imprimante Scalar L et Scalar XL Premium

Kit de renfort pour Scalar L et Scalar XL premium

Cette page présente l’upgrade « kit de renfort » pour les imprimantes 3D Scalar L et Scalar XL Premium

Le montage est similaire pour les 2 modèles d’imprimantes, seul la taille d’un profilé est différent.

L’image précédente met en avant le kit de renfort, ici en rouge, par rapport au reste de la machine

Kit pour Scalar XL premium

Le kit comprend:

  • 2 profilés 500mm
  • 1 profilé 600mm
  • 2 profilés 200mm
  • 8 équerres simple de fixation
  • 17 vis + écrous marteaux
  • 2 caches pour profilés
  • 1 patte de fixation pour l’alimentation

Kit pour Scalar L

  • 3 profilés 500mm
  • 2 profilés 200mm
  • 8 équerres simple de fixation
  • 17 vis + écrous marteaux
  • 2 caches pour profilés
  • 1 patte de fixation pour l’alimentation

Assemblage

Assemblage pour la Scalar XL Premium

Assemblage pour Scalar L


Assemblage commun




Upgrade plateau – Préparation des supports de profilés

Préparation des supports

Petit mot concernant les Poulies GT2:

Les poulies sur les illustrations sont montrées à titre indicatif. Vous pourrez les installer plus tard dans le montage.

 

Liste des pièces:

  • 3 supports de profilé (pièce plastique)
  • 1 support de profilé avec interrupteur de fin de course (pièce plastique)
  • 8 roulements 625ZZ
  • 8 vis 6 pans creux M6x12mm
  • 8 écrous marteaux M6
  • 4 poulies GT2 16 dents

Assemblage des Supports de profilés.

Il vous faudra tout d’abord la pièce plastique .

Ensuite prenez 2 roulements 625ZZ

Ces 2 roulements s’insèrent dans les logements prévus à cet effet à l’intérieur de la pièce plastique.

Positionnement futur de la poulie GT2

La poulie GT2 viendra principalement entre les 2 roulements à l’intérieure de la pièce plastique.

A noter:

Afin d’aligner la courroie plus tard dans le montage, la poulie viendra se coller contre l’un des roulements. Afin de conserver la pièce plastique symétrique, vous aurez donc un vide entre la poulie et le deuxième roulement.

Ici une vue globale

et ici une vue de face. La position et le sens de la poulie sera expliqué plus loin dans le montage.

Répétez la procédure pour les 2 autres supports fournis dans le Kit. Vous devez avoir 3 pièces identiques au total.

Support de pièce avec fin de course.

La procédure pour cette pièce est similaire à la procédure précédente.

La différence résidant sur l’ajout d’un support pour le fin de course du plateau.

Notez cependant la position de la roulette en haut de la pièce.

 

Attention, ce support de fin de course à été mis à jours à partir de Avril 2017

Voici la nouvelles version

Pour mémoire voici l’ancienne version.(avant Avril 2017)

Une fois assemblé

Une fois assemblé vous devriez avoir ce résultat.

Encore une fois, les poulies ne peuvent pas se fixer pour le moment et leur position/sens est à titre indicatif et sera modifié plus tard.

Préparation des vis et écrous de fixation

La phase finale est de préparer les vis de fixation pour plus tard.

Vous aurez besoin de :

  • 8 vis 6 pans creux M6x12mm
  • 8 écrous marteaux M6

Les trous de fixation des vis se trouvent sur les côtés des pièces plastique.

Une fois positionnés vous devrez obtenir un résultat comme celui là

 




Premiers pas dans Cura 2

Splash Cura 2

Le slicer fournis avec les imprimantes Scalar est Cura développé par Ultimaker et maintenu par Ultimaker et sa communauté.

La version actuellement décrite est la 2.3.1 disponible dans la carte SD fournis avec les kits.
Carte SD => Softwares => Slicers – 3D printing => Cura => 2.3.1 (latest)

Le logiciel peut se télécharger directement via le site officiel : https://ultimaker.com/


 Procédure d’installation

Sous windows, les étapes d’installation sont les suivantes:

  • Lancer Cura-2.3.1-win32.exe ou Cura-2.3.1-win64.exe osuivant si votre windows est un 32 ou 64 bits. Lancez la version 32 si vous ne savez pas.

Installation cura 2Installation cura 2

  • Le panneau précédent apparaît, vous proposant de choisir l’endroit où installer le logiciel. Choisissez l’endroit qui vous convient le mieux.

Installation cura 2Installation cura 2

  • Une fenêtre apparaît en vous proposant une liste de composant à installer. Il est conseillé de décocher la case d’installation des drivers Arduino. Il est préférable d’installer ces drivers directement en installant l’IDE arduino.

Installation cura 2

  • A ce moment l’installation des fichiers commence. A la fin appuyez sur « Install« 

Installation cura 2

  • une dernière fenêtre se lance en vous disant que tout s’est bien passé. Appuyez sur « Finish » pour que Cura se lance.

Installation cura 2il se peut qu’une fenêtre supplémentaire apparaisse vous demandant les droits d’accéder au réseau internet

Installation cura 2Vérifiez bien que le nom de l’application est « Cura.exe » et que le chemin de l’application est bon.

Appuyez ensuite sur « Allow Access » pour donner les droits à cura.

Sous Linux et Mac OS, la procédure est similaire.


Ajout de votre imprimante 3D Scalar

Vous devez maintenant ajouter votre imprimante 3D Scalar.

Choisissez Custom (cocher le rond)
Puis saisissez le nom de votre imprimante, Scalar S, M, L, XL, XL Premium. (vous pouvez aussi lui donner un petit surnom 🙂

Il vous faut définir les dimensions de votre imprimante :

  • Scalar S : 200 x 200 x 200
  • Scalar M : 320 x 200 x 250
  • Scalar L : 300 x 300 x 300
  • Scalar XL : 410 x 300 x 300
  • Scalar XL Premium : 410 x 300 x 300

Cochez la case « Plateau chauffant » si votre Scalar en possède un.
NE PAS cocher la case « le centre de la machine est zéro »

Vous devez changer gcode début et de fin (de chaque impression) pour prendre en compte la sonde à inductance (qui permet de compenser si le plateau n’est pas parfaitement droit)

Gcode début Gcode fin
G21 ;metric values
G90 ;absolute positioning
M82 ;set extruder to absolute mode
M107 ;start with the fan off
G28 ;move X/Y to min endstops
G29 ;move Z to min endstops
G1 Z15.0 F{travel_speed} ;move the platform down 15mm
G92 E0 ;zero the extruded length
G1 F200 E15 ;extrude 3mm of feed stock
G92 E0 ;zero the extruded length again
G1 F{travel_speed}
;Put printing message on LCD screen
M117 Impression…
M104 S0 ;extruder heater off
M140 S0 ;heated bed heater off
G91 ;relative positioning
G1 E-1 F300 ;retract the filament a bit before lifting the nozzle, to release some of the pressure
G1 Z+0.5 E-5 X-20 Y-20 F{travel_speed} ;move Z up a bit and retract filament even more
G28 X0 Y0 ;move X/Y to min endstops, so the head is out of the way
M84 ;steppers off
G90 ;absolute positioning
;{profile_string}

Cliquez sur « Fin« , vous arrivez ensuite sur la liste de vos imprimantes

Chargement d’un profil

Dans la carte SD nous vous fournissons des profils pour cura qui sont aussi disponible sur notre page Git :

https://github.com/3DModularSystems/Scalar/tree/master/Documentation/ProfilesCura/2.3.1

Nous allons vous montrer comment charger un profil à partir des éléments qui se trouvent sur la carte SD. La procédure est similaire avec les profils disponibles sur Git.

 

  • Dans cura, allez dans la barre de menu et sélectionnez « Préférences > Configurer Cura…« 

Cliquez sur « Importer  » en haut à droite, choisissez le fichier contenant le profil. Carte SD > Softwares > Slicers – 3D printing > Cura > Profiles > 2.3.1 (latest)

  • Vous trouverez une liste de profils dont certains correspondent à votre machine.
  • Après le chargement du profil, la surface d’impression ainsi que les paramètres par défaut doivent se mettre à jour.

Changer la langue de CuraCura - Menu Fichier

  • Dans la barre de menu, naviguez dans « Settings> Configure settings visibility…. »

 

 

Cura Menu Préférences

  • Une nouvelle fenêtre s’ouvre contenant un liste déroulante ou vous pouvez changer la langue du logiciel.

 

 

 

 

 

 


Description des paramètres

Paramètres « Basic »

Cura Paramètres Basic

Quality:

  • Layer Height: Ce paramètre définit la qualité globale de votre impression en agissant sur la hauteur de chaque couche d’impression. Cette valeur dépend beaucoup de la taille de votre buse, mais une valeur de 0.15mm avec une buse de 0.4/0.5mm est un bon paramètre pour commencer.
  • Shell Thickness: définit l’épaisseur des contours. Ce paramètre doit être un multiple de la taille de la buse. Une épaisseur de contour de 0.8mm pour une buse de 0.4mm correspond à 2 couches d’épaisseur.
  • Enable retraction: permet d’activer la rétraction du filament lorsque la buse se déplace dans le vide. Cela à pour effet de limiter les défaut lié aux gouttes ou au fils laissé par la buse pendant le déplacement. Ce paramètre à beaucoup d’influence sur des imprimantes possédant un tube entre l’extrudeur et la tête chauffante.

En cliquant sur le bouton qui se situe à côté de la case à coché « … » vous faites alors apparaitre les paramètres liés à la rétraction.

Cura panneau Expert Config rétraction

Le paramètre intéressant dans ce panneau est « Z hop when retracting ». Ce paramètre permet de lever légèrement la tête chauffante lors d’un déplacement. Cela permet d’éviter que la buse ne tape ou ne dégrade les couches déjà posés.

Les autres paramètres par défaut sont rarement changés.

Fill:

  • Bottom/Top thickness: correspond à l’épaisseur en haut et en bas de pièce que la machine va remplire à 100%. il est intéressant pour la partie « haute » de la pièce de remplire ces couches entre 1 et 1.2mm. Ce paramètre dépend de la densité de remplissage de la pièce globalement et de la capacité de la machine à déposer du filament dans le vide et donc à boucher des espaces vides.  La hauteur de chaque couche (Layer height) aura aussi un impacte car l’ensemble définit un nombre de couche utilisé pour remplire la partie supérieur et inférieur de la pièce.
  • Fill Density (%): Correspond au taux de remplissage. de votre pièce. Vous pouvez utiliser « 0 » si vous voulez une pièce totalement vide avec seulement les parois, et 100% si vous la voulez pleine. Une petite nuance est à noter cependant. Une grosse différence de remplissage apparait entre 25% et 26%. A 26% de remplissage le patterne de remplissage sera beaucoup plus dense qu’à 25%. Ainsi un remplissage à 26% devait couvrir la plupart de vos besoins.

En appuyant sur le bouton situé à droite avec les « … » vous allez ouvrir un panneau comportant des paramètres avancés lié au remplissage.

Cura Panneau Infill

  • Solid intill Top/Bottom: ces paramètres permettent de remplire ou on le haut ou le bas de la pièce.
  • Infill Overlap: Permet de définir le chevauchement en % entre 2 lignes côte à côtes. Cette valeur joue donc sur la cohésion entre 2 couches de plastique. En général la valeur par défaut de 15% donne de bons résultat. Cependant si vous commencez à voir le pattern de remplissage détériorer la coque extérieur de vos pièces, il vous faudra considérer diminuer cette valeur à 5% ou 10%.
  • Infill prints after perimeters: Ce paramètre permet de dire au slicer si le remplissage se fait avant ou après avoir imprimé la coque extérieur de la pièce. Ce paramètre à un impact directe sur la qualité d’impression de la coque.  La valeur par défaut (case décoché), donne en principe le meilleur résultat.

Speed and Temperature:

  • Print speed: définit la vitesse globale d’impression. une valeur de 50mm/s est une bonne valeur pour commencer. Il faut savoir cependant que cette valeur est une valeur par défaut utilisé par d’autres paramètres lié à la vitesse (dans le panneau avancé), et qu’elle est remplacé au cas par cas.
  • Printing temperature: Ce paramètre correspond à la température de la tête chauffante pendant l’impression. Ce paramètre dépend de la matière que vous allez utilisez dans votre tête chauffante. Ainsi 210°C est une bonne valeur de début pour du PLA et 230°C pour de l’ABS.
  • Bed temperature: Ce paramètre correspond à la température du lit chauffant pendant l’impression. En général 50 ou 60°C sont utiles pour du PLA et 110°C pour de l’ABS. Il est à noter que pour certaines matières, le plateau chauffant augmente sensiblement l’adhésion de votre pièce sur la surface d’impression. Ceci diminue aussi drastiquement le risque que votre pièce se décolle après plusieurs heures d’impression. Vous pouvez aussi vous aider de laque à cheveux pour augmenter encore l’adhésion.

Support:

  • Support type: Permet de générer un support pour votre pièce. Un support correspond à un pilier de matière placé aux endroits ou votre pièce est le plus dans le vide. La machine est capable d’imprimer dans le vide jusqu’à une certaine limite. Après ça il vous faudra un support. Soit votre pièce comporte déjà un support intégré que vous retirez plus tard, soit vous utilisez cette fonctionnalité qui génère le support pour vous. Il existe 3 possibilités:
  1. None (aucun): aucun support ne sera généré => cas par défaut.
  2. Touching buildplate: génèrera un support pouvant prendre son origine seulement sur la surface d’impression. Ainsi une partie directement dans le vide pourra obtenir un support alors qu’une partie dans le vide au dessus d’une partie remplie n’aura aucun support de généré.
  3. Everywhere: permet de généré un support partout ou la pièce se trouve dans le vide.

Le bouton « … » permet d’ouvrir une fenêtre comportant les détails concernant les supports.

Cura Panneau Support

  • Structure type: permet de choisir le pattern du support: soit en « line » (ligne) soit en Grid (quadrillage)
  • Overhang angle for support : permet de définir la limite angulaire à partir de laquelle un support semble nécessaire.
  • Fill amount: quantité de matière utilisé pour généré les support. Plus la valeur est élevée et plus la support sera difficile à enlever. Plus la valeur est basse et moins le support sera consistent.
  • Distance X/Y: permet de définir l’espacement entre la coque extérieure de la pièce et le support. Plus cette valeur est petite et plus le support sera proche de votre pièce. Vous augmentez aussi l’impacte sur la finition extérieure de votre pièce.
  • Distance Z: permet de définir de la même manière l’espace entre le support et votre pièce lorsque le support se trouve en dessous de votre pièce.

 

  • Platform adhesion type: Permet de choisir parmi 3 types de plateforme d’adhésion. Ce paramètres est intéressant si la surface d’impression à la base de votre pièce est petite. Dans ce cas votre pièce, même avec un plateau chauffant, aura plus l’opportunité de se décrocher du plateau. Ainsi utiliser une plateforme d’adhésion permet de s’assurer que la pièce reste bien collée sur la plateau, même avec une petite surface au sol.
  1. None (Aucun): aucune plateforme d’adhésion n’est générée par le slicer.
  2. Brim: génère un nombre de ligne déterminé autour de la pièce, permettant ainsi d’augmenter la surface au sol de la pièce. Ici le as de votre pièce est directement collé sur la surface d’impression.
  3. Raft: génère une surface à base de quadrillage suffisamment espacé, qui augmente la surface au sol « sous » votre pièce. Après l’impression il vous faudra enlever le raft sous vote pièce. Ici le bas de votre pièce ne touche pas la surface d’impression directement.

Le bouton « … » à droite de ce paramètre ouvre une fenêtre avec des paramètres suplémentaires lié au « Skirt ».

Cura Panneau Skirt

Le skirt est l’action d’imprimer un nombre finie de ligne au tour de votre pièce sans jamais la toucher. Le but est de s’assurer que le plastique est bien en pression dans la tête chauffante et que ce dernier coule de la buse de manière consistante avant de démarrer votre pièce.

  1. Line count (nombre de lignes): définit le nombre de lignes qui seront imprimés autour de votre pièce au niveau de la toute première couche. une valeur de 3 est un bon début. Évidement ce paramètre peut être ajuster en fonction de la surface au sol de votre pièce. Plus la surface au sol est importante, plus la quantité de plastique déposé lors du premier passage sera important. A ce moment vous pouvez utiliser une faible valeur (1 par exemple). La taille de la buse peut aussi influer, Avec une grosse buse vous pourrez utiliser d’une valeur plus basse.
  2. Start distance: distance entre votre pièce est ces lignes.
  3. Minimal length: distance minimale de la ligne de « Skirt ». Si le nombre de tours définit ne sont pas suffisant pour arriver à cette valeur, alors le slicer rajoutera des lignes pour compenser. La valeur par défaut semble très bien.

Filament:

  • Diameter: Diamètre de votre filament. ici faites la moyenne de plusieurs mesures faites avec un pied à coulisse et placez la valeur dans cette case. Ce paramètre définit la quantité de matière qui sera injectée dans la tête chauffante. Une mauvaise valeur influera directement sur la qualité extérieur de votre pièce.
  • Flow (%): Permet d’ajuster le pourcentage de matière envoyé à votre tête chauffante. Cela vous permet de faire des essais avant de changer cette valeur au niveau du réglage de votre imprimante (Marlin: E steps/mm)

 

Paramètres « Advanced » (avancés):

Machine:

  • Nozzle size: Correspond à la taille de votre buse de tête chauffante. Paramètre très important.

Retraction:

  • Speed: Vitesse de rétraction au niveau de votre extrudeur lorsqu’il doit tirer sur le filament pour diminuer la pression dans le tube d’extrudeur. Une vitesse trop grande pourra soit endomager l’état de surface de votre filament, soit bloquer votre moteur d’extrudeur. Dans ce cas un manque de matière apparaitra au niveau de votre pièce après le déplacement dans le vide de votre tête chauffante. Une valeur trop basse pourra générer un surplus de matière ou des gouttes  pendant le déplacement de votre tête. Une valeur de 45 est un bon point de départ.
  • Distance: permet de rétracter plus ou moins votre fil à l’intérieur de votre tête chauffante afin d’y diminuer la pression résiduelle et ainsi éviter les effets de goutes ou de fils. A noter cependant que les tête full métal sont très sensible avec ce paramètre. Le PLA à tendance à se dilater rapidement lorsqu’il refroidi brutalement. Ainsi si la rétraction est trop grande le plastique va se dilater dans votre tête chauffante et la bloquer. En général pour les têtes E3D ou AllinOne, ne valeur de 2 ou 3 est un maximum. Pour les tête semi métal comme la AluHotEnd, vous pouvez monter jusqu’à 9 ou 10 sans problèmes de dilatation du plastique, car le liner en plastique à l’intérieur de cette dernière évite au plastique de se dilater.

Quality:

  • Initial Layer thickness: Hauteur de la toute première couche. Ce paramètre est intéressant lorsque vous avez de grosses buses. En général il est intéressant de toujours rester en dessous de la moitié du diamètre de votre buse. Attention, changer ce paramètre influera sur la calibration de votre machine au niveau du « Z offset » et de l' »auto bed leveling » (ABL).
  • Initial Layer line width: Largeur d’extrusion en % des lignes de votre première couche.
  • Cut off object bottom: Permet de couper le bas de votre pièce, si vous désirez commencer votre impression un peu plus haut sur votre modèle.
  • Dual extrusion overlap: Permet de définir le taux de chevauchement entre les couches déposés par 2 extrudeurs différents.

Speed:

Pour toutes ces paramètres, utiliser la valeur « 0 » remplace la valeur par celle du paramètre « Print Speed » du panneau « Basic »

  • Travel speed: (vitesse de déplacement) correspond  à la vitesse de déplacement de votre machine dans le vide. Ce paramètre dépend beaucoup de la géométrie et de la rigidité de votre machine. Pour les Scalar XL une valeur de 80/90mm/s est un maximum. Au délais vous allez obtenir des secousses brutale lors des décélérations. Pour une Scalar M 90/10mm/s est un bon point de départ.
  • Bottom layer speed: (vitesse de la couche basse) correspond à la vitesse d’impression de la première couche. Ici une vitesse assez basse permet de s’assurer que la première couche adhère bien à la surface d’impression. Des valeurs comprises entre 20 et 40mm/s sont des bons points de départ.
  • Infill speed: (vitesse de remplissage) correspond à la vitesse de la machine pendant les phases de remplissage de votre pièce.
  • Top/Bottom speed: Correspond à la vitesse de la machine pendant qu’elle remplie les parties Hautes et basse de vos pièces. Une valeur proche de 40/50mm/s sont des bon points de départ. Une vitesse trop grande risque de générer des trous lors du remplissage de la partie haute de votre pièce.
  • Outter shell speed: Vitesse d’impression à extérieure de la coque de la pièce. Ici des vitesse basses (proche de 40/50mm/s) donnent en principe de bonnes finissions
  • Inner shell Speed: Vitesse d’impression au niveau de l’intérieur de la coque de votre pièce. Une valeur proche du paramètre précédent donne de bon résultats. Une valeur trop éloigné peut impacter l’aspect extérieur de votre pièce.

Cool:

  • Minimal layer time: Temps minium que votre machine mettra pour réaliser 1 couche. Ce paramètre permet au plastique se refroidir avant une deuxième couche. Paramètre intéressant pour le PLA qui à besoin de refroidir avant de lui appliquer une seconde couche. Ce paramètre permet éventuellement de se passer d’un ventilateur auxiliaire pour refroidir votre pièce pendant l’impression.
  • Enable cooling fan: permet d’activer le ventilateur auxiliaire permettant de refroidir votre pièce durant l’impression. Ce paramètre est important pour du PLA mais non utilisé pour des matières comme l’ABS.

Le bouton « … » à côté de ce paramètre ouvre un panneau avec d’avantage de paramètre pour la gestion du ventilateur.

Cura paneau Cool

  1. Fan Full on at height: Permet de définir la hauteur à partir de laquelle la vitesse du ventilateur sera au maximum. La vitesse du ventilateur va progressivement augmenté jusqu’à atteindre cette hauteur.
  2. Fan Speed min: définit la vitesse minimale du ventilateur.
  3. Fan Speed max: définit la vitesse maximale du ventilateur. En théorie ces deux valeur ont une influence, cependant, en pratique, mettre la même valeur à ces 2 paramètre permet d’être sur que le ventilateur tourne à la bonne vitesse.
  4. Minimum speed: permet de définir la vitesse minimale d’impression de votre machine. En dessous de cette valeur une détérioration de la qualité de votre objet est à prévoir.
  5. Cool head lift: Relève la tête chauffante lorsque la vitesse minimale est atteinte pour éviter de détériorer votre pièce.



Assemblage du kit PS_ON

Diagramme général du kit PS_ON

diagramme kit PS_ON

Principe de fonctionnement

Ce kit permet d’éteindre électriquement votre imprimante 3D à la fin de son impression.

Pour ce faire on vient instrumenter un câble d’alimentation  à l’aide d’un relais statique piloté par le contrôleur de l’imprimante 3D.

STL du boitier

Le boitier du kit PS_ON est disponible sur thingiverse

Le câblage en Bref

diagramme kit PS_ON
diagramme kit PS_ON

Les étapes du câblage en photo

Kit PS_ON


L’interrupteur modulaire



Préparation du câble d’alimentation





Raccordement du câble d’alimentation






Soudure des câbles marron et jaune/vert

Après avoir soudé les pairs de câble électrique, pensez à ajuster la position de la gaine thermorétractable et de la faire rétrécir avec un pistolet thermique, une briquet ou une allumette.






Sécurisation des câbles de puissance



Raccordement du câble de pilotage

Dans certains kits, ce câble est déjà fourni connecté sur le relais statique.

Dans le cas contraire, on coupe la partie du câble possédant le connecteur Dupont  avec 2 pins et on conserve celui avec 3 pins.


Sécurisation du câble de pilotage avec un serre câble

Fermeture du capot

Kit PS_ON

Raccordement sur le contrôleur d’imprimante 3D (Ramps 1.4)

raccordement du kit PS_ON sur Ramps 1.4

Modification du Gcode de fin dans votre slicer (CURA)

PS_ON et Cura




Extrudeur Titan

Comment Assembler du titan

La documentation officielle vous montre comment assembler votre extrudeur.

https://wiki.e3d-online.com/wiki/Titan_Assembly

Mode Compacte

Le support plastique est disponible au téléchargement gratuitement sur Thingiverse

Titan extruder mount

Vous avez besoin de:

  • 4 vis M3x10 thermo
  • 6 vis M3x8 thermo

Mode Compatibilité

Notes importantes

  • Avant toute chose, assurez-vous que le « petit » cylindre d’adaptation est installé dans votre extruder.
  • Il vous faudra également vous assurer que la petite partie plastique cylindrique de ce cylindre est installée et pointe vers le bas de l’extrudeur.
  • La pièce plastique qui se trouve au dessus du cylindre doit être adaptée au diamiètre de votre filament.Un marquage sous la pièce vous indique le diamètre.
  • Dans le cas d’un filament de 1.75mm, vous devez avoir un tube en plastique fourni avec la tête. Une fois la tête installée, le tube plastique doit aller jusqu’au au maximum au fond de la tête chauffante. Ensuite la partie du tube qui sort de la tête doit pouvoir s’insérer entièrement à l’intérieur de la pièce plastique qui se positionne au dessus du cylindre!

Installation

Le support plastique est disponible au téléchargement gratuitement sur Thingiverse

Vous avez besoin de

  • 2 vis M3x10mm Thermo
  • 3 vis M3x35mm
  • 1 vis M3x20mm

Extrudeur Titan

 

 

 

 




Kit double extrusion pour imprimante 3D Scalar

Kit d'upgrade double extrusion pour imprimante 3D Scalar

Contenu du kit

Le kit double extrusion compatible avec les imprimantes 3D Scalar S / M / L / XL et XL Premium  possédant la tête chauffante E3D Lite

Le kit contient les éléments suivants

contenu du kit double extrusion pour imprimante 3D scalar

Assemblage du Y

Kit double extrusion pour imprimante 3D scalar

Y pour double extrusion Scalar

Y Pour double extrusion Scalar

Installation du kit double extrusion sur la tête chauffante E3D Lite

kit double extrusion pour imprimante 3D Scalar

Assemblage du support d’extrudeur

postionement de l'extrudeur pour double extrusion sur profilé

Configuration du firmware

Ce tutoriel montre comment procéder avec le firmware Marlin RC8.

La procédure est similaire avec les version ultérieures.

Configuration pour Cura 15.XX

Paramètres cura pour double extrusion ScalarParamètres cura pour double extrusion Scalar

Paramètres cura pour double extrusion Scalar

Paramètres cura pour double extrusion Scalar

Paramètres cura pour double extrusion Scalar

Paramètres cura pour double extrusion Scalar

Scalar L/XL/XL Premium

Paramètres cura pour double extrusion Scalar

M92 X100
M92 Y100
M92 Z2133.33

Scalar S

M92 X100
M92 Y100
M92 Z2560